posted by organizer: prbp || 2519 views || tracked by 2 users: [display]

IoT Edge Computing AI 2021 : Edge Computing Optimization Using Artificial Intelligence Methods

FacebookTwitterLinkedInGoogle

Link: https://www.mdpi.com/journal/IoT/special_issues/edge_computing_AI
 
When N/A
Where N/A
Submission Deadline Jun 30, 2021
Categories    IOT   edge computing   artificial intelligence   job placement optimization
 

Call For Papers

MDPI IoT Journal (ISSN 2624-831X)

Special Issue "Edge Computing Optimization Using Artificial Intelligence Methods"

The growing importance of the Internet of Things (IoT) and the ubiquitous high capacity provided by 5G technologies have brought the specter of massive quantities of data being generated and/or consumed by sensors, actuators, and smart devices. Such massive amounts of data require considerable processing power, which is available in the cloud. However, cloud-based computation and data delivery models do not allow the stringent quality of service (QoS) guarantees to be efficiently harnessed. The latter is due to the number of hops of wired networks between the data endpoints and the cloud, which leads to a significant increase in latency, which may dramatically affect real-time control and other critical systems. Moreover, forwarding all the data generated by such devices directly to the cloud may devour the network bandwidth, leading to congestion. Therefore, it is necessary that critical processing to be hosted closer to the endpoint devices, i.e., closer to the sources and sinks of the data so that data can be processed and filtered out by the time it reaches the cloud. This can be achieved through Edge Computing (EC).

Efficient, scalable, and QoS-aware placement of IoT data processing jobs in EC resources is a complex optimization problem and, currently, an active research topic. As new jobs are created, they have to be assigned computational resources dynamically, matching job requirements with the cost, reliability, location (and mobility), besides the current availability of the resources. Less critical or demanding communication jobs may be offloaded to the cloud. The use of Artificial Intelligence (AI) methods to jointly tackle the problem of job placement optimization, including jobs belonging to AI-based data analytics software, constitute currently active research topics addressed by this Special Issue.

For this Special Issue, original scientific articles are welcome on the following as well as closely related topics:
- AI-based algorithms to optimize job placement in EC
- AI software architectures favoring distributed computing job placement in EC resources (e.g., Distributed Deep Neural Network architectures)
- AI-based mechanisms supporting open EC markets leveraging the participation of third-party computing resources opportunistically (e.g., parked autonomous vehicles)
- AI-based methods to optimize mobile EC resources' placement (e.g., EC capable drones)


Guest Editors:
- Prof. Dr. António M.R.C. Grilo
- Prof. Dr. Paulo Rogerio Pereira
- Prof. Dr. Naércio Magaia

Related Resources

IJCAI 2021   30th International Joint Conference on Artificial Intelligence
IARCE 2021-Ei Compendex & Scopus 2021   2021 5th International Conference on Industrial Automation, Robotics and Control Engineering (IARCE 2021)
FiCloud 2021   The 8th International Conference on Future Internet of Things and Cloud
IWoRE 2021   2021 International Workshop on Renewable Energy (IWoRE 2021)
EI-RACE 2021   2021 Asia-Pacific Conference on Robotics, Automation and Communication Engineering (RACE 2021)
SI on IoT for Fighting COVID-19   CFP - Special Issue on IoT for Fighting COVID-19 [PMC, Elsevier]
StoryCase 2012   ICCBR-12 Workshop on Stories, Episodes, and Cases (StoryCase)
TSCSI_Edge 2020   TSC: Special Issue on Edge AI-as-a-Service
MCSMS 2020   The Sixth International Workshop on Mobile Cloud Computing systems, Management, and Security
Signal 2021   8th International Conference on Signal and Image Processing