| |||||||||||||||
SC 2021 : Conference on High Performance Computing (Supercomputing)Conference Series : Conference on High Performance Computing (Supercomputing) | |||||||||||||||
Link: https://sc21.supercomputing.org/submit/paper-submissions/ | |||||||||||||||
| |||||||||||||||
Call For Papers | |||||||||||||||
Abstracts Submissions Close
April 2, 2021 Full Paper Submissions Close April 9, 2021 (No extensions; includes manuscript, AD, and optional AE appendix) Reviews Sent May 14, 2021 Resubmission Deadline May 28, 2021 (Includes manuscript, AD, and optional AE appendix) Notifications Sent June 21, 2021 Major Revision Deadline July 16, 2021 (Includes manuscript, AD, and optional AE appendix) Major Revision Notifications Sent August 6, 2021 Final Paper Deadline August 27, 2021 Overview The SC Papers program is the leading venue for presenting high-quality original research, groundbreaking ideas, and compelling insights on future trends in high performance computing, networking, storage, and analysis. Technical papers are peer-reviewed and an Artifact Description is mandatory for all papers submitted to SC. Areas/Tracks Submissions will be considered on any topic related to high performance computing within the areas below. Authors must indicate a primary area from the choices on the submissions form and are strongly encouraged to indicate a secondary area. Small-scale studies – including single-node studies – are welcome as long as the paper clearly conveys the work’s contribution to high performance computing. Algorithms The development, evaluation, and optimization of scalable, general-purpose, high performance algorithms. Topics include: Algorithms for discrete and combinatorial optimization Algorithms for hybrid and heterogeneous systems with accelerators Algorithms for numerical methods and algebraic systems Data-intensive parallel algorithms Energy- and power-efficient algorithms Fault-tolerant algorithms Graph and network algorithms Load balancing and scheduling algorithms Uncertainty quantification methods Other high performance computing algorithms Applications The development and enhancement of algorithms, parallel implementations, models, software and problem solving environments for specific applications that require high performance resources. Topics include: Bioinformatics and computational biology Computational earth and atmospheric sciences Computational materials science and engineering Computational astrophysics/astronomy, chemistry, and physics Computational fluid dynamics and mechanics Computation and data enabled social science Computational design optimization for aerospace, energy, manufacturing, and industrial applications Computational medicine and bioengineering Improved models, algorithms, performance or scalability of specific applications and respective software Use of uncertainty quantification, statistical, and machine-learning techniques to improve a specific HPC application Other high performance applications Architecture and Networks All aspects of high performance hardware including the optimization and evaluation of processors and networks. Topics include: Architectures to support extremely heterogeneous composable systems (e.g., chiplets) Design-space exploration / Performance projection for future systems Evaluation and measurement on testbed or production hardware systems Hardware acceleration of containerization and virtualization mechanisms for HPC Interconnect technologies, topology, switch architecture, optical networks, software-defined networks I/O architecture/hardware and emerging storage technologies Memory systems: caches, memory technology, non-volatile memory, memory system architecture (to include address translation for cores and accelerators) Multi-processor architecture and micro-architecture (e.g. reconfigurable, vector, stream, dataflow, GPUs, and custom/novel architecture) Network protocols, quality of service, congestion control, collective communication Power-efficient design and power-management strategies Resilience, error correction, high availability architectures Scalable and composable coherence (for cores and accelerators) Secure architectures, side-channel attacks, and mitigation Software/hardware co-design, domain specific language support Clouds and Distributed Computing Cloud and system software architecture, configuration, optimization and evaluation, support for parallel programming on large-scale systems or building blocks for next-generation HPC architectures. Topics include: HPC, cloud, and edge computing convergence at infrastructure and software level, including service-oriented architectures and tools Job/workflow scheduling, load balancing, resource provisioning, energy efficiency, fault tolerance, and reliability Methods, systems, and architectures for big data and data stream processing in HPC and cloud systems OS/runtime and system-software enhancements for many-core systems, accelerators, complex memory space/hierarchies, I/O, and network structures Parallel programming models and tools at the intersection of cloud, edge, and HPC Self-configuration, management, information services, monitoring, and introspective system software Security and identity management in HPC and cloud systems Scalable HPC and machine learning case studies on distributed and/or cloud systems Virtualization and containerization to support HPC and emerging uses such as machine learning Data Analytics, Visualization, and Storage All aspects of data analytics, visualization, storage, and storage I/O related to HPC systems. Submissions on work done at scale are highly favored. Topics include: Cloud-based analytics at scale Databases and scalable structured storage for HPC Data mining, analysis, and visualization for modeling and simulation Data analytics and frameworks supporting data analytics Ensemble analysis and visualization I/O performance tuning, benchmarking, and middleware Next-generation storage systems and media Parallel file, object, key-value, campaign, and archival systems Provenance, metadata, and data management Reliability and fault tolerance in HPC storage Scalable storage, metadata, namespaces, and data management Storage tiering, entirely on-premise internal tiering as well as tiering between on-premise and cloud Storage innovations using machine learning such as predictive tiering, failure, etc. Storage networks Scalable Cloud, Multi-Cloud, and Hybrid storage Storage systems for data-intensive computing Machine Learning and HPC The development and enhancement of algorithms, systems, and software for scalable machine learning utilizing high-performance and cloud computing platforms. Topics include: ML for HPC / HPC for ML Data parallelism and model parallelism Efficient hardware for machine learning Hardware-efficient training and inference Performance modeling of machine learning applications Scalable optimization methods for machine learning Scalable hyper-parameter optimization Scalable neural architecture search Scalable IO for machine learning Systems, compilers, and languages for machine learning at scale Testing, debugging, and profiling machine learning applications Visualization for machine learning at scale Performance Measurement, Modeling, and Tools Novel methods and tools for measuring, evaluating, and/or analyzing performance for large scale systems. Topics include: Analysis, modeling, or simulation methods for performance Methodologies, metrics, and formalisms for performance analysis and tools Novel and broadly applicable performance optimization techniques Performance studies of HPC hardware and software subsystems such as processor, network, memory, accelerators, and storage Scalable tools and instrumentation infrastructure for measurement, monitoring, and/or visualization of performance System-design tradeoffs between performance and other metrics (e.g., performance and resilience, performance and security) Workload characterization and benchmarking techniques Programming Systems Technologies that support parallel programming for large-scale systems as well as smaller-scale components that will plausibly serve as building blocks for next-generation HPC architectures. Topics include: Compiler analysis and optimization; program transformation Parallel programming languages, libraries, models, and notations Parallel application frameworks Programming language and compilation techniques for reducing energy and data movement (e.g., precision allocation, use of approximations, tiling) Program analysis, synthesis, and verification to enhance cross-platform portability, maintainability, result reproducibility, resilience (e.g., combined static and dynamic analysis methods, testing, formal methods) Runtime systems as they interact with programming systems Solutions for parallel-programming challenges (e.g., interoperability, memory consistency, determinism, race detection, work stealing, or load balancing) Tools for parallel program development (e.g., debuggers and integrated development environments) State of the Practice All R&D aspects of the pragmatic practices of HPC, including operational IT infrastructure, services, facilities, large-scale application executions and benchmarks. Topics include: Bridging of cloud data centers and supercomputing centers Comparative system benchmarking over a wide spectrum of workloads Containers at scale: performance and overhead Deployment experiences of large-scale infrastructures and facilities Facilitation of “big data” associated with supercomputing Infrastructural policy issues, especially international experiences Long-term infrastructural management experiences Pragmatic resource management strategies and experiences Procurement, technology investment and acquisition best practices Quantitative results of education, training and dissemination activities Software engineering best practices for HPC User support experiences with large-scale and novel machines Reproducibility of data System Software Operating system (OS), runtime system and other low-level software research & development that enables allocation and management of hardware resources for HPC applications and services. Topics include: Alternative and specialized parallel operating systems and runtime systems Approaches for enabling adaptive and introspective system software Communication optimization Software distributed shared memory systems System-software support for global address spaces OS and runtime system enhancements for attached and integrated accelerators Interactions among the OS, runtime, compiler, middleware, and tools Parallel/networked file system integration with the OS and runtime Resource management Runtime and OS management of complex memory hierarchies System software strategies for controlling energy and temperature Support for fault tolerance and resilience Virtualization and virtual machines |
|