posted by organizer: valerieliptak || 3867 views || tracked by 7 users: [display]

SenSys-ML 2019 : Machine Learning on Edge in Sensor Systems

FacebookTwitterLinkedInGoogle

Link: https://sensysml.github.io/index
 
When Nov 10, 2019 - Nov 10, 2019
Where New York, New York
Abstract Registration Due Aug 23, 2019
Submission Deadline Aug 31, 2019
Notification Due Sep 7, 2019
Final Version Due Sep 20, 2019
Categories    machine learning   sensor networks   artificial intelligence   internet of things
 

Call For Papers

The 1st Workshop on Machine Learning on Edge in Sensor Systems (SenSys-ML) focuses on work that combines sensor signals from the physical world with machine learning, particularly in ways that are distributed to the device or use edge and fog computing. The development and deployment of ML at the very edge remains a technological challenge constrained by computing, memory, energy, network bandwidth and data privacy and security limitations. This is especially true for battery operated devices and always-on use cases and applications. This workshop will provide a forum for sensing, networking and machine learning researchers to present and share their latest research on building machine learning enabled sensor systems. Sensys-ML focuses on providing extensive feedback on Work In Progress papers involving machine learning (TinyML/ UltraML) on sensor systems.

Topics of interest include, but are not limited to, the following:
Advancement in Hardware for enabling TinyML capabilities at the edge
System Architecture for supporting TinyML and UltraML
Parallel and Distributed Machine Learning for Sensor and Network systems
Machine Learning driven Data Analytics
System and Algorithm co-design for practical TinyML at Sensor Systems
Security and Privacy at the Edge
Video Analytics at the Edge
Validation and debugging of TinyML and UltraML
Emerging Sensing Applications using TinyML

Submitted papers must be unpublished and must not be currently under review for any other publication. There are two submission tracks:

Full papers, which will be eligible for publication at most 6 single-spaced 8.5” x 11” pages with 10-pt font size in two-column format, including figures and tables and references. All submissions must use the LaTeX (preferred) or Word styles found here. LaTeX submissions should use the acmart.cls template (sigconf option), with the 10-pt font, make sure to use \documentclass[10pt, sigconf]{acmart} in your document. This format will be used also for the camera-ready version of accepted papers. Papers must include authors names and affiliations for single-blind peer reviewing by the PC. Papers that do not meet the size, formatting, and anonymization requirements will not be reviewed. We require each paper to be in Adobe Portable Document Format (PDF) and submitted through the Sensys-ML HoTCRP submission site. Accepted papers will be published in the ACM Digital Library. At least one of the authors of every accepted paper must register and present the paper at the workshop. The program committee will elect one paper for the Best Paper Award.

Work In Progress, which is a presentation-only format. We request a 1 single spaced 8.5” x 11” page abstract submission. Please note that these submissions will not be published as this is a presentation-only format.

Related Resources

DATA 2021   International Conference on Data Science, E-learning and Information Systems 2021
FAIML 2020-Ei Compendex & Scopus 2020   2020 2nd International Conference on Frontiers of Artificial Intelligence and Machine Learning (FAIML 2020)
MLHMI--Ei Compendex and Scopus 2021   2021 2nd International Conference on Machine Learning and Human-Computer Interaction (MLHMI 2021)--Ei Compendex, Scopus
AICA 2020   O'Reilly AI Conference San Jose
SenSys-ML 2020   SenSys-ML 2020: Workshop on Machine Learning on Edge in Sensor Systems
EI-JCRAI 2020   2020 International Joint Conference on Robotics and Artificial Intelligence (JCRAI 2020)
Fintech 2020   Sustainaility (Q2): Fintech: Recent Advancements in Modern Techniques, Methods and Real-World Solutions
StoryCase 2012   ICCBR-12 Workshop on Stories, Episodes, and Cases (StoryCase)
SI-DAMLE 2020   Special Issue on Data Analytics and Machine Learning in Education
ISCAI 2020   2020 2nd International Symposium on Computing and Artificial Intelligence (ISCAI 2020)