posted by organizer: Vzt15 || 7048 views || tracked by 10 users: [display]

SENSORCOMM 2019 : The Thirteenth International Conference on Sensor Technologies and Applications

FacebookTwitterLinkedInGoogle

Link: https://www.iaria.org/conferences2019/SENSORCOMM19.html
 
When Oct 27, 2019 - Oct 31, 2019
Where Nice, France
Submission Deadline Jul 23, 2019
Notification Due Aug 18, 2019
Final Version Due Sep 12, 2019
Categories    sensors   networking   communication   security
 

Call For Papers

INVITATION:

=================

Please consider to contribute to and/or forward to the appropriate groups the following opportunity to submit and publish original scientific results to:

- SENSORCOMM 2019, The Thirteenth International Conference on Sensor Technologies and Applications

The submission deadline is July 23, 2019

Proceedings will be submitted for indexing in Web of Science (WoS) (ISI Thompson Reuters)

Authors of selected papers will be invited to submit extended article versions to one of the IARIA Journals: http://www.iariajournals.org

=================


============== SENSORCOMM 2019 | Call for Papers ===============

CALL FOR PAPERS, TUTORIALS, PANELS


SENSORCOMM 2019, The Thirteenth International Conference on Sensor Technologies and Applications

General page: http://www.iaria.org/conferences2019/SENSORCOMM19.html

Submission page: http://www.iaria.org/conferences2019/SubmitSENSORCOMM19.html


Event schedule: October 27, 2019 to October 31, 2019 - Nice, France


Contributions:

- regular papers [in the proceedings, digital library]

- short papers (work in progress) [in the proceedings, digital library]

- ideas: two pages [in the proceedings, digital library]

- extended abstracts: two pages [in the proceedings, digital library]

- posters: two pages [in the proceedings, digital library]

- posters: slide only [slide-deck posted at www.iaria.org]

- presentations: slide only [slide-deck posted at www.iaria.org]

- demos: two pages [posted at www.iaria.org]

- doctoral forum submissions: [in the proceedings, digital library]


Proposals for:

- mini symposia: see http://www.iaria.org/symposium.html

- workshops: see http://www.iaria.org/workshop.html

- tutorials: [slide-deck posed on www.iaria.org]

- panels: [slide-deck posed on www.iaria.org]


Submission deadline: June 18, 2019


Sponsored by IARIA, www.iaria.org

Extended versions of selected papers will be published in IARIA Journals: http://www.iariajournals.org

Print proceedings will be available via Curran Associates, Inc.: http://www.proceedings.com/9769.html

Articles will be archived in the free access ThinkMind Digital Library: http://www.thinkmind.org


The topics suggested by the conference can be discussed in term of concepts, state of the art, research, standards, implementations, running experiments, applications, and industrial case studies. Authors are invited to submit complete unpublished papers, which are not under review in any other conference or journal in the following, but not limited to, topic areas.

All tracks are open to both research and industry contributions, in terms of Regular papers, Posters, Work in progress, Technical/marketing/business presentations, Demos, Tutorials, and Panels.

Before submission, please check and comply with the editorial rules: http://www.iaria.org/editorialrules.html


SENSORCOMM 2019 Topics (for topics and submission details: see CfP on the site)

Call for Papers: http://www.iaria.org/conferences2019/CfPSENSORCOMM19.html

============================================================

TRENDS: Targets and achievements

Low-power sensor networks; Energy harvesters; Universal access; Smart metering; Medical sensor networks; Sensing sensor signals; Intrabody communication channels; Human sensor networks; Local aggregation IoT (Internet of Things); Social swarming information; Sensor-actuator networks; Sensing real-time networks; Environmental sensor networks; Indoor and outdoor sensor networks; Urban wireless sensor networks; Wearable smart sensor networks; Human emotions/activities recognition; Antenna and feature selection; Open source and open hardware devices; Measurement apps; Resiliency and specialized protocols; Synchronization in wireless sensor networks; Propagation-aware synchronization; Tracking and partial position information; Failure handling; Security and authentication

APASN: Architectures, protocols and algorithms of sensor networks

Network planning, provisioning and deployment; Network Architectures for Sensor Networks; Network Protocols for Sensor Networks; Structural design; Distributed Sensor Networks; Dynamic sensor networks; Scalable and heterogeneous architectures; Hierarchical clustering architectures; Group-based Architectures; Network topologies; Mesh networking; Device centric sensor networks; Distributed coordination algorithms; Topology construction; Routing protocols; Routing Metrics; Distributed Algorithms; Attribute-based named nets; Mobility and Scalability; Attribute-based named Sensor Networks; Query optimization; Self-organization and self-configuration algorithms; Reconfigurability; Time Synchronization; MAC protocols for sensor networks (801.11, 802.15.4, UWB, etc); Location and time service; Integration with other systems; Distributed inference and fusion; Cross-layer design and optimization; Complexity analysis of algorithms; Sensor networks and the Web; Integration with other systems (e.g., Web-based information systems, process control, enterprise software, etc.); Target tracking; RFID tags; Traffic scheduling

MECSN: Energy, management and control of sensor networks

Energy models; Energy optimization; Energy management; Power-aware and energy-efficient design; Power sources in sensor networks; Battery technology; Power management; Algorithms and theories for management; Communication strategies for topology control; Algorithms and theories for supervisory control; Sensor tasking and control; Distributed control and actuation; Location and mobility management; Bandwidth management; Distributed networked sensing; Resource provisioning; Resource management and dynamic resource management; Schemes to maximize accuracy and minimize false alarms; Online self-calibration and self-testing; Handoff and mobility management and seamless internetworking; Distributed actuation and control; Topology control

RASQOFT: Resource allocation, services, QoS and fault tolerance in sensor networks

Algorithms to support quality of service in sensor networks; Protocols to support quality of service in sensor networks; QoS/SLA in sensor networks; Provisioning of QoS in terms of bandwidth and delay assurance; System services and distributed services in sensor networks; Delay tolerant networks and opportunistic networking; Failure resilience and fault isolation; Information assurance in sensor networks; Fault tolerance and reliability; Admission control; Resource allocation and fairness; Real-time resource scheduling; Scheduling and optimisation; Capacity planning

PESMOSN: Performance, simulation and modelling of sensor networks

Performance measurement of sensor networks; Performance evaluation and analysis of sensor networks; Performance comparison on capacity, coverage and connectivity; Modelling techniques of sensor networks; Validation of sensor network architectures; Simulation and theoretical analysis; Simulation software tools and environments; Theoretical performance analysis: complexity, correctness and scalability; Design, simulation and optimization tools for deployment and operation; Platform modelling and analysis tools; Analytical, mobility and validation models; System debugging and testing

SEMOSN: Security and monitoring of sensor networks

Security and privacy in sensor networks; Reliability aspects in sensor networks; Monitoring distributed sensor networks; Mechanisms for authentication; Secure communication in sensor networks; Encryption algorithms for sensor networks; Sensor secure management; Data integrity; Trustworthiness issues in sensor networks; Trade-off analysis

SECSED: Sensor circuits and sensor devices

Methods for sensor deployment; Instrumentation and models for deployment of sensors networks; Sensor architecture; Abstractions for modular design; Design and deployment of embedded system platforms; Embedded architectures and tools; Embedded processors; Embedded chip design; Micro and Nano devices; Biosensors; Optical sensors; Smart sensors; Acoustic Sensors; Microwave sensors; Middleware design; Sensor Prototypes; Sensor node components; Sensor interfaces; Actuators; Independent Component Analysis; Design of cost effective and economical sensors; Smart Material Applications to design sensors; Microfabrication Technologies for Microsystem Integration; Integration of sensors into engineered systems; Hardware platforms; Test-beds incorporating multiple sensors; Operating system and middleware support

SOCIAL: Social Sensing

Social computing; Mobile phones as social sensors (Mobile sensing); Wearable sensing; Spatial epidemiology; Data availability and quality; Dataprotection and confidentiality, Social mining; Reality mining; Mobility patterns; Sampling and computation distribution; Human information processing; Battery power and communication tradeoff; Sensing systems tools; Applications and experiences; Social sensing applications; Complex social systems; Compressed sensing.

RIWISN: Radio issues in wireless sensor networks

Wireless Sensor Communications; Network connectivity & longevity; Tracking objects; Geo-location problems; Network coverage; Algorithms for sensor localization and tracking; Detection, classification and estimation; Physical layer impact on higher level protocols; Directional and smart antennas for sensor networks; Coverage maintenance; Transceiver and antenna design; Ubiquitous wireless connectivity

SAPSN: Software, applications and programming of sensor networks

Applications and demonstrations of sensor networks; Software platforms and development tools; Architectural design and optimization tools for sensor nodes; Computation and programming models of sensor networks; Languages and operating systems of Sensors; Programming and Interfacing; Programming abstraction; Programming models for sensors; Programming methodology for sensor environments; Intelligent sensor theory and applications; Machine learning applications to sensor networks; Wireless sensor applications; Applications for sensor network management; Software tools for chip programming; Application requirements; Application evaluation and comparison; Demos and prototype testing

DAIPSN: Data allocation and information in sensor networks

Techniques for the interpretation and use of sensor data in decision-making processes; Distributed data processing; Distributed signal processing; Array signal processing; Statistical signal processing; Distributed query processing; Distributed information processing; Distributed algorithms for collaborative information and signal processing; Task allocation, reprogramming and reconfiguration; Coding and information theory; In-network processing and aggregation; Data analysis and visualisation; Data storage in sensor networks; Data retrieval; Data dissemination; Data compression and aggregation; Data transport in wireless sensor networks; Data gathering and fusion in wireless sensor networks; Theories and models on fundamental information and communication aspects of sensor networks; Redundancy

DISN: Deployments and implementations of sensor networks

Methods for sensor networks deployment; Practical implementations and real-world experiences; Real-life deployments; System implementation; End-user aspects; Operational experience and test-beds; Industrial and commercial developments and applications; Measurements from experimental systems, test-beds and demonstrations; Intelligent sensors, body sensors and their utilisation; Analysis of real-world systems and fundamental limits; Smart Sensors for building surveillance; Sensing in health care; Games using sensor networks; Peer-to-peer, overlay, and content distribution wireless sensor networks; Use cases (e.g., Automotive, Battlefield, Defense, Construction, Disaster recovery, Environmental, Medical, Security, Biomedical, Unmanned Aerial Vehicles, etc.); Sensor networks for Rural and Agricultural environments; Sensors for railway systems; Pattern Recognition; Machine Intelligence; Sensor-equipped Smart Environment; Deployments in Harsh Environments; Potential application areas

AIS: Atmospheric Icing and Sensing

Design aspects of atmospheric ice sensor (Control circuitry, winterization, power supporting system, embedded systems, power converters, interface and data links, communication, material ,quality control, practical implementations, real time development, end user aspects); Atmospheric ice sensing techniques (Capacitive ice sensors, infrared ice sensors, load cell based ice sensors, vibrating probe based ice sensor, ultrasonic ice sensors); Applications of atmospheric ice sensor (Ice sensors for wind energy/resource assessment, ice sensors for offshore structures, ice sensors for road applications, ice sensors for power transmission, ice sensors for aviation, ice sensors for communication sector); Experience from field measurements in cold regions (system maintenance , remote sensing, logistics & accessibility, human efficiency while maintenance, system health monitoring, anticipation to unforeseen errors, synchronization and delays in operation)

UNWAT: Under water sensors and systems

Protocols for underwater sensor networks; Underwater hardware; Underwater wired systems; Underwater wireless sensor networks; Underwater sensors for neutrino telescopes; Acoustic and radio underwater communication; Aquatic environments and applications; Unmanned underwater exploration; Underwater localization and knowledge acquisition; Scalable underwater monitoring and measurement systems; Fixed and mobile underwater wireless sensors; Aquatic surveillance applications; QoS/Performance in underwater communication; Surface-floating and underwater sensor communication; Access control in underwater networks; Latency effects for critical applications and synchronization; Synchronization and delays in underwater sensor networks; Localization in underwater sensor networks; Advanced underwater sensor-based applications

ENOPT: Energy optimization in wireless sensor networks

Energy supply, lifetime and transmission power; Energy efficiency; State-driven energy optimization; Power consumption models; Energy-aware adaptive low power; Optimal energy-aware clustering; Lifetime-oriented energy provisioning; Sensor placement and accessibility; Random sensor deployment and density function; Fixed and adjustable transmission power; Traffic and energy consumption rate; Energy-efficient topology control; Energy optimization in multi-hop communications; Energy harvesting for autonomous sensors

------------------------

SENSORCOMM 2019 Committee: http://www.iaria.org/conferences2019/ComSENSORCOMM19.html

Related Resources

BDCAT 2024   IEEE/ACM Int’l Conf. on Big Data Computing, Applications, and Technologies
IEEE COINS 2024   IEEE COINS 2024 - London, UK - July 29-31 - Hybrid (In-Person & Virtual)
Call for Chapters - Wiley-IEEE Press 2025   Internet of Things A to Z: Technologies and Applications - Second Edition
ACM-Ei/Scopus-CCISS 2024   2024 International Conference on Computing, Information Science and System (CCISS 2024)
iMETA 2024   International Conference on Intelligent Metaverse Technologies & Applications
GreeNet Symposium - SGNC 2024   15th Symposium on Green Networking and Computing (SGNC 2024)
Optogenetics 2024   4th Optogenetic Technologies and Applications Conference
ACM-Ei/Scopus-DMNLP 2024   2024 International Conference on Data Mining and Natural Language Processing (DMNLP 2024)
ICMLA 2024   23rd International Conference on Machine Learning and Applications
IAAI 2024   Innovative Applications of Artificial Intelligence