posted by user: AYCEMT || 2204 views || tracked by 2 users: [display]

DLAIR 2019 : Deep Learning for Audio Information Retrieval and Computer Vision

FacebookTwitterLinkedInGoogle

Link: http://codit19.com/Special-Sessions/Deep_Learning_Audio_Computer_Vision.pdf
 
When Apr 23, 2019 - Apr 26, 2019
Where Paris - France
Submission Deadline Dec 5, 2018
Notification Due Feb 8, 2019
Final Version Due Feb 28, 2019
Categories    deep learning   audio information   computer vision   gaming
 

Call For Papers

Session Co-Chairs:
Fu-Hai Frank Wu, National Tsing Hua University, Taiwan

Session description:
Recent years, the deep learning(DL) techniques have applied to audio(speech, music, sound etc.) and video(including image). There are differences and commons for these two fields in term of input data type, usually the video is in raw formats (mostly RGB pixel data) and the audio in pre-processed format s, for example spectrogram). Besides, the focus of data augmentation, including synthetic data, strategies are different to be effective in the training phase. In the respective of DL architecture, convolution kernel sizes and pooling strategies are generally distinct. The kernel size of audio DL is rectangular with the long-end in time axis and the other is square due to the import localized characteristic of image in fully convolutional network. The countermeasure beside the rectangular kernel size for the long-term characteristic of audio could be the adoption of recurrent network, for example long-short term memory(LSTM). The DL for audio and video is a broad topic, besides the discriminant problems we mention, it is obvious that tons of issues could be addressed. We also welcome the research of cross-domain inter-activities, although mostly audio IR borrow the DL outcome from the computer vision.
The special session will gather the researchers in the field of DL for audio information retrieval and computer vision to share the research progress, new finding , and state-of-the-art algorithms . We hope to explore and enumerate the common methods could be shared by studying the individual field. We expect to inspire and foster cross-domain improvement and increase the multi-modality research.

The topics of interest include, but are not limited to:
 music lyrics and other textual data, web mining, and natural language processing
 multi-modality
 corpus creation
 musical rhythm, beat, tempo
 optical music recognition
 text in scene
 music synthesis and transformation
 automatic classification
 indexing and querying
 pattern matching and detection
 human-computer interaction
 gaming
 action recognition
 recognition, detection, categorization,indexing
 segmentation, grouping and shape representation

Related Resources

SDLDIP 2021   Special Issue on Sensors and Deep Learning for Digital Image Processing
AICA 2020   O'Reilly AI Conference San Jose
FCSIT 2020   2020 2nd Euro-Asia Conference on Frontiers of Computer Science and Information Technology (FCSIT 2020)
CCVPR 2020   2020 3rd International Joint Conference on Computer Vision and Pattern Recognition (CCVPR 2020)
ML4Music 2021   Special Issue: Machine Learning Applied to Music/Audio Signal Processing (Electronics)
IoTE 2020   International Conference on Internet of Things & Embedded Systems
SI-DAMLE 2020   Special Issue on Data Analytics and Machine Learning in Education
ASPAI 2020   2nd International Conference on Advances in Signal Processing and Artificial Intelligence
DLMIA 2020   Deep Learning on Medical Image Analysis - Journal of Imaging (ESCI)
ICFSP--IEEE, Ei, Scopus 2021   IEEE--2021 6th International Conference on Frontiers of Signal Processing (ICFSP 2021)--Ei Compendex, Scopus