posted by user: Xavier || 8826 views || tracked by 16 users: [display]

MDPI Information 2019 : MDPI OA Journal of Information Science, Technology and Engineering --SI on Machine Learning for Cyber-Security

FacebookTwitterLinkedInGoogle

Link: https://www.mdpi.com/journal/information/special_issues/ML_Cybersecurity
 
When N/A
Where N/A
Submission Deadline Feb 28, 2019
Categories    machine learning   security   intrusion detection systems   artificial intelligence
 

Call For Papers

Dear Colleagues,

Over the past decade, the rise of new technologies, such as the Internet of Things and associated interfaces, have dramatically increased the attack surface of consumers and critical infrastructure networks. New threats are being discovered on a daily basis making it harder for current solutions to cope with the large amount of data to analyse. Numerous machine learning algorithms have found their ways in the field of cyber-security in order to identify new and unknown malware, improve intrusion detection systems, enhance spam detection, or prevent software exploit to execute.

While these applications of machine learning algorithms have been proven beneficial for the cyber-security industry, they have also highlighted a number of shortcomings, such as the lack of datasets, the inability to learn from small datasets, the cost of the architecture, to name a few. On the other hand, new and emerging algorithms, such as Deep Learning, One-shot Learning, Continuous Learning and Generative Adversarial Networks, have been successfully applied to solve natural language processing, translation tasks, image classification and even deep face recognition. It is therefore crucial to apply these new methods to cyber-security and measure the success of these less-traditional algorithms when applied to cyber-security.

This Special Issue on machine learning for cyber-security is aimed at industrial and academic researcher applying non-traditional methods to solve cyber-security problems. The key areas of this Special Issue include, but are not limited to:

+ Generative Adversarial Models;
+ One-shot Learning;
+ Continuous Learning;
+ Challenges of Machine Learning for Cyber Security;
+ Strength and Shortcomings of Machine Learning for Cyber-Security;
+ Graph Representation Learning;
+ Scalable Machine Learning for Cyber Security;
+ Neural Graph Learning; Machine Learning Threat Intelligence;
+ Ethics of Machine Learning for Cyber Security Applications

Dr. Xavier Bellekens
Guest Editor

High visibility: indexed by Ei Compendex, Scopus (Elsevier), Emerging Sources Citation Index (ESCI - Web of Science)

Related Resources

SI on ATD&IS II 2023   Special Issue on Advanced Technologies in Data and Information Security II, Applied Sciences, MDPI
FAIML 2023   2023 International Conference on Frontiers of Artificial Intelligence and Machine Learning (FAIML 2023)
ICCDA 2023   2023 The 7th International Conference on Compute and Data Analysis (ICCDA 2023)
MLDM 2023   18th International Conference on Machine Learning and Data Mining
IWIP 2023   2023 3rd International Workshop on Image Processing (IWIP 2023)
IJCNN 2023   International Joint Conference on Neural Networks
CoMSE 2023   2023 International Conference on Materials Science and Engineering (CoMSE 2023)
CBW 2023   4th International Conference on Cloud, Big Data and Web Services
ICoSMS 2023   2023 International Conference on Smart Materials and Surfaces (ICoSMS 2023)
DIS 2023   6th International Conference on the Dynamics of Information Systems