posted by user: BenoitHuet || 2151 views || tracked by 4 users: [display]

CCCMR 2015 : International Workshop on Content-, Context- and Crowd-based Multimedia Recommendation


When Jun 23, 2015 - Jun 26, 2015
Where Shanghai
Submission Deadline Feb 15, 2015
Notification Due Mar 15, 2015
Final Version Due Apr 5, 2015

Call For Papers

Workshop Description

Recommender systems are becoming increasingly important due to the overload of information brought by today’s Internet. With the rapid growth of digital devices and media sharing platforms, the amount of multimedia information has explosively increased in recent years. Therefore, multimedia recommender systems are crucial for proactively helping users in their information seeking process within the huge volume of Internet multimedia. In traditional recommender systems, user-item collaborative information (such as Collaborative Filtering and Matrix Factorization based methods) and multimedia contents (such as Content-based Filtering methods) are two major sources to predict the user-item interaction behaviors. However, with the growth of data scale, traditional recommender systems seriously suffer from the sparsity problem of user-item interactions. In addition, it has been demonstrated by the industry (e.g. Netflix, YouTube etc.) that the collaborative information is quite limited in capturing the user behavior patterns and intentions in information seeking.

With the fast development of social networks and online media sharing platforms, user profiles, tagged multimedia contents and the interaction behaviors between users and multimedia contents are digitally recorded in an unprecedented level. This provide us a precious opportunity to deeply investigate the user-information interaction mechanism, and design more accurate recommender systems. Take video recommendation for example. From the video aspect, we have not only video contents, but also user-labeled tags, geographic information, and user comments etc. From the user (crowd) aspect, we also have user profiles, user relationships and user interactions, etc. From the user-information interaction aspect, we can reconstruct fine-granular user behavior logs and also the temporal and spatial context information for these interaction behaviors. The information above gives us a good opportunity to better understand the user-content interaction behavior patterns. Further, it can be regarded as a supplement of collaborative information to solve the sparsity problem. Therefore, developing computational methods to jointly utilize the information in content, context and crowd dimensions for multimedia recommendation is of paramount importance to improve the performance of recommender systems, and provide us new advances including new approaches and directions on multimedia recommendation.

The objective of this special issue is therefore to provide a forum for researchers in multimedia recommendation and multimedia retrieval to review pressing needs, discuss challenging research issues, and showcase the state-of-the-art research and multimedia recommender systems in the modern Internet environment.

Topics of Interests

The topics of interests of this special issue include, but not limited to, the followings:

Data representation for multimedia recommendation
Knowledge discovery for multimedia recommendation
Social-sensed multimedia recommendation
Multimedia-focused recommendation models and applications
User profiling and modeling for multimedia recommendation
Multimedia recommendation for new users and/or contents
Cross-platform multimedia recommendation
Collective user behavior modeling for multimedia recommendation
Crowd sourcing for multimedia recommendation
Personalized multimedia recommendation for large scale data
Context-aware multimedia recommendation
HCI and presence for multimedia recommendation
Mobile Multimedia recommender systems

Paper Submission

Submissions must be original and not submitted to or accepted by any other conference or journal. They should be prepared according to the ICMR 2015 format (ACM style) and must not exceed 6 pages. The reviewing process will be double blind. Therefore, authors must conceal their identity (no author names, no affiliations, no acknowledgment of sponsors, no direct references to previous work). Each paper will receive at least 3 reviews by recognized experts in the field.

Please use to submit your manuscripts.

Important Dates

Deadline for paper submission February 1st, 2015- Extented to February 15th, 2015, 11:59PM PST
Notification of acceptance March 15th, 2015
Camera Ready Paper and Registration April 5th, 2015


Peng Cui,, Tsinghua University, China
Benoit Huet,, EURECOM, France

Related Resources

MTAP Special Issue on CBIR 2022   Special Issue on Content-Based Image Retrieval: where have we been, and where are we going
SUMAC 2022   The 4th workshop on Structuring and Understanding of Multimedia HeritAge Contents, in conjunction with ACM Multimedia 2022
Embedded Systems for AI-Based Health Mon 2022   Embedded Systems for AI-Based Health Monitoring in Cyber Physical Systems
AVSS 2022   Advanced Video and Signal Based-Surveillance
ISM 2022   IEEE International Symposium on Multimedia
AMCIS 2022   Sourcing Through the Crowd: Issues in Platform-enabled Work
MLMHCIHCAMCI 2022   Machine Learning Methods in High-Content Imaging and High-Content Analysis for Molecular and Cellular Imaging
MLMHCIHCAMCI 2022   Machine Learning Methods in High-Content Imaging and High-Content Analysis for Molecular and Cellular Imaging
ICAS 2022   The Eighteenth International Conference on Autonomic and Autonomous Systems
SENSORS SI: Human Centered AI 2022   Human Centered Artificial Intelligence: Putting the Human in the Loop for Implementing Sensors Based Intelligent Environments