posted by organizer: matish || 5508 views || tracked by 7 users: [display]

KSBT 2015 : AAAI-2015 Workshop on Knowledge, Skill, and Behavior Transfer in Autonomous Robots


When Jan 25, 2015 - Jan 26, 2015
Where Austin, TX, USA
Submission Deadline Oct 12, 2014
Notification Due Nov 14, 2014
Final Version Due Nov 25, 2014
Categories    artificial intelligence   robotics   machine learning

Call For Papers

Autonomous robots have achieved high levels of performance and reliability at specific tasks. However, for them to be practical and effective at everyday tasks in our homes and offices, they must be able to learn to perform different tasks over time, and rapidly adapt to new situations.

Learning each task in isolation is an expensive process, requiring large amounts of both time and data. In robotics, this expensive learning process also has secondary costs, such as energy usage and joint fatigue. Furthermore, as robotic hardware evolves or new robots are acquired, these robots must be trained, which is extremely inefficient if performed tabula rasa.

Recent developments in knowledge representation, machine learning, and optimal control provide a potential solution to this problem, enabling robots to minimize the time and cost of learning new tasks by building upon knowledge acquired from other tasks or by other robots. This ability is essential to the development of versatile autonomous robots that can perform a wide variety of tasks and rapidly learn new abilities.

Various aspects of this problem have been addressed by different communities in artificial intelligence and robotics. This symposium will seek to draw together researchers from these different communities toward the goal of enabling autonomous robots to support a wide variety of tasks, rapidly and robustly learn new abilities, adapt quickly to changing contexts, and collaborate effectively with other robots and humans.

Transfer in Autonomous Robots:
- Inter-Task Transfer Learning
- Transfer Over Long Sequences of Tasks
- Cross-Domain Transfer Learning
- Long-Term Autonomy
- Autonomy in Dynamic and Noisy Environments
- Lifelong Learning
- Knowledge Representation
- Simulated to Real Robot Transfer, and Vice Versa

Multi-Robot Systems

- Multi-Robot Knowledge Transfer
- Task Switching in Multi-Robot Learning
- Distributed Transfer Learning
- Knowledge/Skill Transfer Across Heterogeneous Robots

Human-Robot Interaction

- Human-Robot Knowledge/Skill Transfer
- Knowledge/Skill Transfer in Mixed Human-Robot Teams
- Learning by Demonstration, Imitation Learning

Cloud Networked Robotics

- Access to Shared Knowledge, Reasoning, and Skills in the Cloud
- Cloud-based Knowledge/Skill Transfer
- Cloud-based Distributed Transfer Learning


- Testbeds and Environments
- Data Sets
- Evaluation Methodology

Related Resources

AAAI 2020   The Thirty-Fourth AAAI Conference on Artificial Intelligence
IJCAI 2021   30th International Joint Conference on Artificial Intelligence
AAAI 2021   35th AAAI Conference on Artificial Intelligence
IARCE 2021-Ei Compendex & Scopus 2021   2021 5th International Conference on Industrial Automation, Robotics and Control Engineering (IARCE 2021)
AAMAS 2020   International Conference on Autonomous Agents and Multi-Agent Systems 2020
ICDM 2021   21th Industrial Conference on Data Mining
KDD 2021   27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
EI-RACE 2021   2021 Asia-Pacific Conference on Robotics, Automation and Communication Engineering (RACE 2021)
AAAI-MAKE 2020   AAAI 2020 Spring Symposium on Combining Machine Learning and Knowledge Engineering in Practice
AAAI-MAKE 2021   AAAI 2021 Spring Symposium on Combining Machine Learning and Knowledge Engineering