posted by organizer: Fab189 || 388 views || tracked by 1 users: [display]

AIoT Workshop@Mobihoc 2025 : The Third International Workshop on the Integration between Distributed Machine Learning and the Internet of Things (AIoT)

FacebookTwitterLinkedInGoogle

Link: https://www.aiot-workshop.xyz/3rd-edition-2025
 
When Oct 30, 2025 - Oct 30, 2025
Where Houston, Texas
Submission Deadline Jul 30, 2025
Notification Due Aug 23, 2025
Final Version Due Aug 30, 2025
Categories    internet of things   artificial intelligence   distributed learning   ai and iot
 

Call For Papers

AIoT, the Third International ACM MobiHoc Workshop on the Integration between Distributed Machine Learning and the Internet of Things, aims to bring together researchers and practitioners from academia and industry to explore the design, deployment, and operation of distributed intelligence in resource-constrained and large-scale IoT systems. We invite original contributions in the form of theoretical insights, algorithmic advances, experimental evaluations, and real-world applications. Topics of interest include, but are not limited to:

· Efficient Machine Learning on low-power or constrained IoT systems
· Distributed, Federated, and Split Learning across edge and cloud systems in IoT environments
· System architectures and runtime optimization for learning in IoT systems
· Hardware acceleration and platform co-design for edge intelligence in IoT systems
· Communication and networking support for distributed model training in IoT systems
· Protocols for model sharing, updates, and coordination in IoT systems
· Edge collaboration and cross-device intelligence in IoT systems
· Privacy-preserving training methods and secure aggregation mechanisms for distributed, Federated, and Edge Learning in IoT systems
· Experimental testbeds, real-world deployments, and benchmarking tools for IoT systems
· Applications in areas such as smart cities, healthcare, industrial IoT systems, agriculture, and transportation
· Scalability, reliability, and performance tuning for large-scale IoT systems
· Open challenges, new directions, and emerging trends in decentralized learning for IoT systems
· Model personalization and adaptation techniques for Federated Learning in IoT systems
· Fault tolerance, robustness, and reliability in Distributed Learning for IoT systems
· Edge AI for low-latency applications in IoT systems
· Energy-aware learning algorithms for IoT systems
· Cross-platform Machine Learning for heterogeneous IoT systems
· Network slicing and QoS-aware techniques for Federated Learning in IoT systems
· Evolutionary models and online learning techniques in IoT systems
· Decentralized consensus algorithms for model coordination in IoT systems
· AI techniques for IoT security

Related Resources

Ei/Scopus-ITCC 2026   2026 6th International Conference on Information Technology and Cloud Computing (ITCC 2026)
AMLDS 2026   IEEE--2026 2nd International Conference on Advanced Machine Learning and Data Science
Ei/Scopus-CEICE 2026   2026 3rd International Conference on Electrical, Information and Communication Engineering (CEICE 2026)
IEEE-ACAI 2025   2025 IEEE 8th International Conference on Algorithms, Computing and Artificial Intelligence (ACAI 2025)
Ei/Scopus-CMLDS 2026   2026 3rd International Conference on Computing, Machine Learning and Data Science (CMLDS 2026)
Ei/Scopus-SGGEA 2025   2025 2nd Asia Conference on Smart Grid, Green Energy and Applications (SGGEA 2025)
Ei/Scopus-CNIOT 2026   2026 7th IEEE International Conference on Computing, Networks and Internet of Things (CNIOT 2026)
Ei/Scopus-DMNLP 2026   2026 3rd International Conference on Data Mining and Natural Language Processing (DMNLP 2026)
AAIML 2026   IEEE--2026 International Conference on Advances in Artificial Intelligence and Machine Learning
KDD 2026   32nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining