posted by user: sameer || 5755 views || tracked by 15 users: [display]

Big Learning 2011 : NIPS 2011 Workshop on Algorithms, Systems, and Tools for Learning at Scale

FacebookTwitterLinkedInGoogle

Link: http://www.biglearn.org
 
When Dec 16, 2011 - Dec 17, 2011
Where Sierra Nevada, Spain
Submission Deadline Oct 7, 2011
Notification Due Nov 1, 2011
Final Version Due Nov 25, 2011
Categories    machine learning   artificial intelligence   parallel & distributed systems   large scale
 

Call For Papers

Big Learning: Algorithms, Systems, and Tools for Learning at Scale

NIPS 2011 Workshop (http://www.biglearn.org)

Submissions are solicited for a two day workshop December 16-17 in Sierra Nevada, Spain.

This workshop will address tools, algorithms, systems, hardware, and real-world problem domains related to large-scale machine learning (“Big Learning”). The Big Learning setting has attracted intense interest with active research spanning diverse fields including machine learning, databases, parallel and distributed systems, parallel architectures, and programming languages and abstractions. This workshop will bring together experts across these diverse communities to discuss recent progress, share tools and software, identify pressing new challenges, and to exchange new ideas. Topics of interest include (but are not limited to):

* Hardware Accelerated Learning: Practicality and performance of specialized high-performance hardware (e.g. GPUs, FPGAs, ASIC) for machine learning applications.

* Applications of Big Learning: Practical application case studies; insights on end-users, typical data workflow patterns, common data characteristics (stream or batch); trade-offs between labeling strategies (e.g., curated or crowd-sourced); challenges of real-world system building.

* Tools, Software, & Systems: Languages and libraries for large-scale parallel or distributed learning. Preference will be given to approaches and systems that leverage cloud computing (e.g. Hadoop, DryadLINQ, EC2, Azure), scalable storage (e.g. RDBMs, NoSQL, graph databases), and/or specialized hardware (e.g. GPU, Multicore, FPGA, ASIC).

* Models & Algorithms: Applicability of different learning techniques in different situations (e.g., simple statistics vs. large structured models); parallel acceleration of computationally intensive learning and inference; evaluation methodology; trade-offs between performance and engineering complexity; principled methods for dealing with large number of features;

We suggest keeping the paper under 4 pages (NOT including references) in the NIPS latex style. For projects that require more room for descriptions, we encourage the authors to include details of the work as appendix and/or other supplementary materials. Relevant work previously presented in non-machine-learning conferences is strongly encouraged. Exciting work that was recently presented is allowed, provided that the extended abstract mentions this explicitly.

Submission Deadline: October 7th, 2011.
Please refer to the website for detailed submission instructions: http://biglearn.org/index.php/AuthorInfo

Related Resources

IARCE 2021-Ei Compendex & Scopus 2021   2021 5th International Conference on Industrial Automation, Robotics and Control Engineering (IARCE 2021)
ICMLA 2021   20th IEEE International Conference on Machine Learning and Applications
ML_BDA 2021   Special Issue on Machine Learning Technologies for Big Data Analytics
ICML 2021   International Conference on Machine Learning
ai4i 2021   Artificial Intelligence for Industries (ai4i 2021)
EI-RACE 2021   2021 Asia-Pacific Conference on Robotics, Automation and Communication Engineering (RACE 2021)
CHEME 2021   5th International Conference on Chemical Engineering
IEEE COINS 2021   Internet of Things IoT | Artificial Intelligence | Machine Learning | Big Data | Blockchain | Edge & Cloud Computing | Security | Embedded Systems |
IEEE COINS 2021   AI ML Big Data Vision Track | Artificial Intelligence | Machine Learning | Deep Learning | Machine Vision | Big Data Analytics | Video Analytics
StoryCase 2012   ICCBR-12 Workshop on Stories, Episodes, and Cases (StoryCase)