posted by user: DDDM2011 || 4678 views || tracked by 10 users: [display]

DDDM 2011 : The 5th International Workshop on Domain Driven Data Mining

FacebookTwitterLinkedInGoogle

Link: http://datamining.it.uts.edu.au/dddm/dddm11/
 
When Dec 11, 2011 - Dec 14, 2011
Where Vancouver, Canada
Submission Deadline Aug 15, 2011
Notification Due Sep 20, 2011
Final Version Due Oct 11, 2011
Categories    data mining   machine learning   artifical intelligence   databases
 

Call For Papers

The 5th International Workshop on Domain Driven Data Mining (DDDM)
In conjunction with the 2011 IEEE International Conference on Data Mining (ICDM 2011)
December 11-14, 2011, Vancouver, Canada

http://datamining.it.uts.edu.au/dddm/dddm11/ 
---------------------------------------------------------------------

The Workshop on Domain Driven Data Mining (DDDM) series aims to provide a premier forum for sharing findings, knowledge, insight, experience and lessons in tackling potential challenges in discovering actionable knowledge from complex domain problems, promoting interaction and filling the gap between academia and business, and driving a paradigm shift from data-centered hidden pattern mining to domain-driven actionable knowledge delivery in varying data mining domains toward supporting smart decision and businesses.

All papers accepted by the workshop will be included in the ICDM'10 Workshop Proceedings published by the IEEE Computer Society Press.  

* Important Dates:
* Submission Deadline (Extended): August 15, 2011
* Notification of Acceptance: September 20, 2011
* Camera Ready Submission Due: October 11, 2011

Topics:
This workshop solicits original theoretical and practical research on the following topics. 
(1) Methodologies and infrastructure 
* Domain-driven data mining methodology and project management
* Domain-driven data mining framework, system support and infrastructure
(2) Ubiquitous intelligence
* Involvement and integration of human intelligence, domain intelligence, network intelligence, organizational intelligence and social intelligence in data mining 
* Explicit, implicit, syntactic and semantic intelligence in data
* Qualitative and quantitative domain intelligence
* In-depth patterns and knowledge
* Human social intelligence and animat/agent-based social intelligence in data mining
* Explicit/direct or implicit/indirect involvement of human intelligence
* Belief, intention, expectation, sentiment, opinion, inspiration, brainstorm, retrospection, reasoning inputs in data mining
* Modeling human intelligence, user preference, dynamic supervision and human-mining interaction
* Involving expert group, embodied cognition, collective intelligence and consensus construction in data mining
* Human-centered mining and human-mining interaction
* Formalization of domain knowledge, background and prior information, meta knowledge, empirical knowledge in data mining
* Constraint, organizational, social and environmental factors in data mining
* Involving networked constituent information in data mining
* Utilizing networking facilities for data mining
* Ontology and knowledge engineering and management
* Intelligence meta-synthesis in data mining
* Domain driven data mining algorithms
* Social data mining software
(3) Deliverable and evaluation
* Presentation and delivery of data mining deliverables
* Domain driven data mining evaluation system
* Trust, reputation, cost, benefit, risk, privacy, utility and other issues in data mining 
* Post-mining, transfer mining, from mined patterns/knowledge to operable business rules
* Knowledge actionability, and integrating technical and business interestingness
* Reliability, dependability, workability, actionability and usability of data mining 
* Computational performance and actionability enhancement
* Handling inconsistencies between mined and existing domain knowledge
(4) Enterprise applications
* Dynamic mining, evolutionary mining, real-time stream mining, and domain adaptation
* Activity, impact, event, process and workflow mining
* Enterprise-oriented, spatio-temporal, multiple source mining
* Domain specific data mining, etc.

Keynote Speaker:
* Jian Pei, Simon Fraser University


Organizing Committee:
---------------------
* General chair:
- Phillips Yu, University of Illinois at Chicago

* PC co-chairs:
- Wei Fan, IBM T.J. Watson Research
- Wolfgang Nejdl, L3S Research Center, University of Hannover
- Ling Chen, University of Technology Sydney

Related Resources

ICDM 2021   21th Industrial Conference on Data Mining
ICSRS--Scopus & EI Compendex 2021   2021 5th International Conference on System Reliability and Safety (ICSRS 2021)--Scopus & EI Compendex
MLDM 2021   17th International Conference on Machine Learning and Data Mining
KDD 2021   27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
CCBD--Ei & Scopus 2021   2021 The 8th International Conference on Cloud Computing and Big Data (CCBD 2021)--Ei Compendex & Scopus
IEEE--ICCIS--Ei and Scopus 2021   IEEE--2021 5th International Conference on Communication and Information Systems (ICCIS 2021)--Ei Compendex, Scopus
IARCE 2021-Ei Compendex & Scopus 2021   2021 5th International Conference on Industrial Automation, Robotics and Control Engineering (IARCE 2021)
ACM--CCIOT--EI, Scopus 2021   ACM--2021 6th International Conference on Cloud Computing and Internet of Things (CCIOT 2021)--Ei Compendex, Scopus
CFDSP 2021   2021 International Conference on Frontiers of Digital Signal Processing (CFDSP 2021)
SCOPUS-3CE 2021   2021 Asia Conference on Communications and Computer Engineering (3CE 2021)