posted by organizer: albertberahas || 2153 views || tracked by 2 users: [display]

HOO 2022 : Order up! The Benefits of Higher-Order Optimization in Machine Learning: NeurIPS 2022

FacebookTwitterLinkedInGoogle

Link: https://order-up-ml.github.io/
 
When Dec 2, 2022 - Dec 2, 2022
Where New Orleans, LA
Submission Deadline Sep 22, 2022
Notification Due Oct 20, 2022
Categories    optimization   machine learning   higher-order
 

Call For Papers

Optimization is a cornerstone of nearly all modern machine learning (ML) and deep learning (DL). Simple first-order gradient-based methods dominate the field for convincing reasons: low computational cost, simplicity of implementation, and strong empirical results.

Yet second- or higher-order methods are rarely used in DL, despite also having many strengths: faster per-iteration convergence, frequent explicit regularization on step-size, and better parallelization than SGD. Additionally, many scientific fields use second-order optimization with great success.

A driving factor for this is the large difference in development effort. By the time higher-order methods were tractable for DL, first-order methods such as SGD and it’s main variants (SGD + Momentum, Adam, …) already had many years of maturity and mass adoption.

The purpose of this workshop is to address this gap, to create an environment where higher-order methods are fairly considered and compared against one-another, and to foster healthy discussion with the end goal of mainstream acceptance of higher-order methods in ML and DL.

Plenary Speakers:
- Amir Gholami (UC Berkeley)
- Coralia Cartis (University of Oxford)
- Frank E. Curtis (Lehigh University)
- Donald Goldfarb (Columbia University)
- Madeleine Udell (Stanford University)

****CALL FOR PAPERS****
We welcome submissions to the workshop under the general theme of “Order up! The Benefits of Higher-Order Optimization in Machine Learning”. Some examples of acceptable topics include:
- Higher-order methods,
- Adaptive gradient methods,
- Novel higher-order-friendly models,
- Higher-order theory papers,
- and many more.

For submission details, please see https://order-up-ml.github.io/CFP/. Please use our CMT submission portal which can be found at the following link: https://cmt3.research.microsoft.com/HOOML2022.

Important Dates:
Submission deadline: September 22, 2022 (AOE)
Acceptance notification: October 20, 2022 (AOE)
Final version due: TBD

Organizers:
- Albert S. Berahas (University of Michigan)
- Jelena Diakonikolas (University of Wisconsin-Madison)
- Jarad Forristal (University of Texas at Austin)
- Brandon Reese (SAS Institute Inc.)
- Martin Takáč (MBZUAI)
- Yan Xu (SAS Institute Inc.)

Related Resources

Learning & Optimization 2026   ASCE EMI Minisymposium on Probabilistic Learning, Stochastic Optimization, and Digital Twins
Ei/Scopus-ITCC 2026   2026 6th International Conference on Information Technology and Cloud Computing (ITCC 2026)
IEEE ICETT 2026   IEEE--2026 12th International Conference on Education and Training Technologies (ICETT 2026)
IEEE-ICECCS 2026   2025 IEEE International Conference on Electronics, Communications and Computer Science (ICECCS 2026)
AMLDS 2026   IEEE--2026 2nd International Conference on Advanced Machine Learning and Data Science
Ei/Scopus-CEICE 2026   2026 3rd International Conference on Electrical, Information and Communication Engineering (CEICE 2026)
EI/Scopus-PCDI 2026   2026 International Conference on Perception, Control and Decision Intelligence-EI/Scopus
Ei/Scopus-CMLDS 2026   2026 3rd International Conference on Computing, Machine Learning and Data Science (CMLDS 2026)
KDD 2026   32nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining
CACML 2026   2026 5th Asia Conference on Algorithms, Computing and Machine Learning (CACML 2026)