posted by user: fpinell || 1754 views || tracked by 2 users: [display]

FL4P-WSDM 2022 : The First Workshop on Federated Learning for Private Web Search and Data Mining

FacebookTwitterLinkedInGoogle

Link: https://fl4p-wsdm.github.io/
 
When Feb 25, 2022 - Feb 25, 2022
Where Phoenix, AZ, US
Submission Deadline Dec 18, 2021
Notification Due Jan 20, 2022
Final Version Due Jan 31, 2022
 

Call For Papers

Many popular web-based services and data mining applications nowadays leverage the power of machine learning (ML) and artificial intelligence (AI) to ensure effective performance. All of these are made possible because of the huge volume of data constantly generated on various devices, such as PCs/laptops and mobile smartphones.

Centralized ML and AI pose significant challenges due to regulatory and privacy concerns in real-world use cases. Privacy has been traditionally viewed as an essential human right. There have been increasing legislation endeavors on data privacy protection, e.g. European Union General Data Protection Regulation and California Consumer Privacy Act.

Federated learning (FL) is a new paradigm in machine learning that was first introduced by Google in 2017. It aims to address the challenges above by training a global model using distributed data, without the need for the data to be shared nor transferred to any central facility. Despite the clear advantages, there are still many technical challenges waiting to be solved, such as fairness issues, data statistical heterogeneity, communication efficiency and network robustness.

The workshop is targeted on the above and other relevant issues, aiming to create a platform for people from academia and industry to communicate their insights and recent results.

Topics of interest include, but are not limited to, the following:
FL algorithm related issues, e.g. adversarial attack, communication compression, algorithm explainability/interpretability, data/device heterogeneity, optimization algorithm advances, personalization, fairness, resource efficiency, and so on;
FL and collaborative ML applications, like advertising, query analysis and processing, web healthcare, search engine, log mining, recommender system, blockchain,social network, and others;
Other data privacy preservation techniques, such as differential privacy, secure multi-party computing, data/model distillation, data anonymization, etc;
Social, operational challenges and legislation issues about privacy in web search and data mining;
Datasets and open-source tools for federated and privacy-preserving web search and data mining.

Related Resources

WSDM 2026   19th ACM International Conference on Web Search and Data Mining
WSDM 2025   18th ACM International Conference on Web Search and Data Mining
DESERE 2025   DeSeRe: Second International Workshop on Decentralized Search and Recommendation (DESERE 2025)
AMLDS 2026   IEEE--2026 2nd International Conference on Advanced Machine Learning and Data Science
Ei/Scopus-CEICE 2026   2026 3rd International Conference on Electrical, Information and Communication Engineering (CEICE 2026)
FedGenAI-IJCAI 2025   International Workshop on Federated Learning with Generative AI In Conjunction with IJCAI 2025
S+SSPR 2026   Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition and Structural and Syntactic Pattern Recognition
ICCAI 2026   2026 12th International Conference on Computing and Artificial Intelligence (ICCAI 2026)
FL-AsiaCCS 2025   International Workshop on Secure and Efficient Federated Learning In Conjunction with ACM AsiaCCS 2025
The Web 2026   WWW 2026 : The Web Conference