posted by system || 6907 views || tracked by 16 users: [display]

ALIHT 2011 : The Second Annual Workshop on Agents Learning Interactively from Human Teachers


When Jul 16, 2011 - Jul 18, 2011
Where Barcelona, Spain
Submission Deadline Apr 15, 2011
Notification Due May 1, 2011
Final Version Due May 14, 2011
Categories    artificial intelligence   robotics   computer science   agents

Call For Papers

As intelligent robotic and software agents populate everyday human
environments, they will need the ability to adapt. For such agents,
human teachers present a narrow but critical learning environment.
Research in interactive learning seeks to enable agents to learn from
human instruction, harnessing human expertise to learn tasks and
customizing behavior to match human preferences.

Machines cannot be imbued by their designers with all of the knowledge
and skills that they will need to serve useful, long-term roles in our
dynamic world. If humans and machines are to work together in
challenging environments, then machines must be able to learn quickly
from any knowledgeable human, not just expert programmers. The
environments in which humans act are highly diverse and constantly
changing --- whether at home, in the office, or out in the field. Even
a machine with exhaustive background knowledge must be customized for
the particular environment in which it acts. Between humans, the
interactive student-teacher framework is known to be effective and,
furthermore, is familiar to every human; even young children teach one
another games and novel skills. Endowing machines with human-like
learning capabilities allows humans to teach such machines as they
would teach other humans and thus exploits skills that humans already
possess. Another strength of an interactive learning approach is in
the generality of the student-teacher mechanism; namely, that it might
be applied to a wide range of tasks with minimal, ideally no,
modification or specialization.

Research in interactive learning encompasses a wide range of
approaches and is referenced under many names, including teachable
agents, imitation, learning from demonstration, active learning,
interactive shaping, and bootstrapped learning. This workshop aims to
advance research in interactive learning by bringing together
researchers with different approaches and attempting to establish
standards for comparing systems, evaluating their performance,
combining results from different aspects of the problem, and creating
an organizing structure to situate the body of work within.

The potential application domains for interactive learning are many
--- both for autonomous robots and for virtual agents --- and range
across a spectrum of abstractness from fine motor skills to deep,
abstract knowledge such as that acquired at a university. An
interactive learning system therefore may be formulated in a variety
of ways, and we encourage a broad spectrum of applications. In
particular, we welcome contributions from both the robotic and
software agents communities. One of our main goals is to bridge this
divide, to create a single community of research on interactive
learning agents.

Related Resources

IARCE 2021-Ei Compendex & Scopus 2021   2021 5th International Conference on Industrial Automation, Robotics and Control Engineering (IARCE 2021)
ai4i 2021   Artificial Intelligence for Industries (ai4i 2021)
ACHI 2021   The Fourteenth International Conference on Advances in Computer-Human Interactions
EI-ISoIRS 2021   2021 2nd International Symposium on Intelligent Robotics and Systems (ISoIRS 2021)
ADRW 2021   «Archives during rebellions and wars». From the age of Napoleon to the cyber war era
JCRAI 2021   2021 International Joint Conference on Robotics and Artificial Intelligence (JCRAI 2021)
ICMLA 2021   20th IEEE International Conference on Machine Learning and Applications
RiE 2021   12th International Conference on Robotics in Education
ICAART 2021   13th International Conference on Agents and Artificial Intelligence
EI-CFAIS 2021   2021 International Conference on Frontiers of Artificial Intelligence and Statistics (CFAIS 2021)