posted by user: 786121244 || 4891 views || tracked by 7 users: [display]

Recommender systems 2021 : SN Computer Science Call for Papers: Topical Issue on Advanced Theories and Algorithms for Next-generation Recommender Systems

FacebookTwitterLinkedInGoogle

Link: https://resource-cms.springernature.com/springer-cms/rest/v1/content/18491852/data/v6
 
When N/A
Where N/A
Submission Deadline Dec 31, 2020
Notification Due May 20, 2021
Final Version Due Jun 20, 2021
Categories    recommender systems   user modelling   machine learning   recommendations
 

Call For Papers

Recommender systems have become one of the most important and practical applications of artificial intelligence (AI). In the era of digital economy, recommender systems are becoming increasingly popular and have been planted in nearly every corner of our daily life including online shopping, route planning, precision health, etc. However, facing the complex and uncertain real-world scenarios, the existing recommender systems have shown their limitations in fulfilling the users’ requirements, such as the lack of robustness in handling noise data and attacks, and their inability to interact with users and to explain the recommendations. To this end, it is necessary to develop next-generation recommender systems, e.g., trustworthy, conversational and explainable recommender systems, by substantially taking the advantages of the powerful AI theories and techniques. On the one hand, next-generation recommender systems are not only more robust when facing the noisy data and shilling attacks, but are also more user-friendly by providing better interaction, conversation with the end-users as well as good explanations of the recommendation results; on the other hand, the deep learning dominated AI techniques have shown great potential in dealing with various kinds of complex data as well as modelling and predicting users’ complex behaviors. Naturally, AI-enabled next-generation recommender systems are one of the most promising directions in computer science.

This topical issue aims to collect the most recent theoretical and practical advances in recommender systems, including cutting-edge theories, foundations and learning systems as well as actionable tools and impactful case studies of next-generation recommender systems, supported by advanced AI and machine learning techniques. Those theories and algorithms that focus on the particular issues in recommender systems, including interaction, preference elicitation, privacy, trust, accountability, emotions/personality etc. are particularly welcome.

• the tentative date of paper submission: 31 December 2021
• Submission Deadline: 2022 09 30

Related Resources

ICoSSE 2026   2026 9th International Conference on Software and System Engineering (ICoSSE 2026)
Ei/Scopus-CCNML 2025   2025 5th International Conference on Communications, Networking and Machine Learning (CCNML 2025)
IEEE-ACAI 2025   2025 IEEE 8th International Conference on Algorithms, Computing and Artificial Intelligence (ACAI 2025)
Ei/Scopus-SGGEA 2025   2025 2nd Asia Conference on Smart Grid, Green Energy and Applications (SGGEA 2025)
Ei/Scopus-MLBDM 2025   2025 5th International Conference on Machine Learning and Big Data Management (MLBDM 2025)
Ei/Scopus-IPCML 2025   2025 International Conference on Image Processing, Communications and Machine Learning (IPCML 2025)
IEEE-Ei/Scopus-PRDM 2025   2025 6th International Conference on Pattern Recognition and Data Mining (PRDM 2025)
IEEE- CCRIS 2025   2025 IEEE 6th International Conference on Control, Robotics and Intelligent System (CCRIS 2025)
COMP 2025   OPEN COMPUTER SCIENCE
ICIST 2026   2026 The 5th International Conference on Intelligent Science and Technology (ICIST 2026)