posted by user: 786121244 || 4437 views || tracked by 10 users: [display]

Recommender systems 2020 : Scopus/Springer Special issue: Data Science for Next-Generation Recommender Systems with International Journal of Data Science and Analytics

FacebookTwitterLinkedInGoogle

Link: https://www.springer.com/journal/41060/updates
 
When N/A
Where N/A
Submission Deadline Aug 30, 2020
Notification Due Oct 30, 2020
Final Version Due Dec 30, 2020
Categories    data science   recommender systems   recommendation   machine learning
 

Call For Papers

Call for papers
Special issue: Data Science for Next-Generation Recommender Systems
International Journal of Data Science and Analytics

We are living in the age of data, where nearly every task we conduct in our daily lives depends on data and can be tracked and supported digitally. Massive data of different types, including numeric variables, images, videos, music, text, etc., could be collected when shopping, working, socializing, communicating, relaxing and traveling, as part of our daily lives. As a multi-disciplinary field that integrates mathematics, statistics and computer science, data science uses scientific methods, processes, algorithms and systems to extract knowledge and insights from structured and unstructured data, with the ultimate goal to support decision making. In this context, recommender systems have been one of the most important applications of data science. Recommender systems use advanced analytics and learning techniques to select relevant and significant information from massive data and inform users’ smart decision-making on their daily needs.

This special issue solicits the latest and significant contributions on developing and applying data science and advanced analytics for building next-generation recommender systems, and particularly on data+model-driven intelligent and personalized recommender systems.

Topics of Interest:
The special issue invites submissions on all topics of data science for recommender systems, including but not limited to:
•Advanced data mining, machine learning and deep learning for recommender systems;
•Automated recommender systems with automated model selection and parameter tuning in open and dynamic environment;
•Big data analytics and its applications to recommender systems;
•Context-aware and domain-driven recommender systems;
•Data science theories and techniques for recommender systems;
•Data-driven behavior modelling, analysis, and prediction for dynamic, session-based, sequential and next-best recommendation;
•Non-IID recommender systems with complex couplings, interactions, relations and heterogeneities;
•Recommender systems in low-quality large or small data and with misinformation; Personalized recommender systems and precision recommendation;
•Recommender systems for light-weighted and energy-efficient devices, IoT, PDA and relevant contexts; and
•Surveys, reviews and prospects on data-driven next-generation recommender systems.

Guest Editors:
Yan Wang (yan.wang@mq.edu.au), Macquarie University, Australia
Shoujin Wang (shoujin.wang@mq.edu.au), Macquarie University, Australia
Fikret Sivrikaya (fikret.sivrikaya@gt-arc.com), GT-ARC gGmbH, Berlin, Germany
Sahin Albayrak (sahin.albayrak@dai-labor.de), Technische Universität Berlin, Germany
Vito Walter Anelli (vitowalter.anelli@poliba.it), Polytechnic University of Bari, Italy

Important Dates:
•Paper submission due: August 30, 2020
•First round review notification: October 20, 2020
•Further rounds of review may be required based on previous review outcomes
•Camera-ready version due: December 30, 2020
•Special issue to be published online: January, 2021

Submission Guidelines:
Papers submitted to this special issue for possible publication must be original and must not be under consideration for publication in any other journal or conference. All manuscripts must be prepared according to the journal publication guidelines and author’s instructions which can be found on the website (http://www.springer.com/41060). Papers will be reviewed following the journal standard review process. Please remember to select this special issue when you submit your manuscript in the submission system.

Enquiries:
Enquiries about this special issue can be sent to any guest editors.

Related Resources

ICSRS--Scopus & EI Compendex 2021   2021 5th International Conference on System Reliability and Safety (ICSRS 2021)--Scopus & EI Compendex
ICDM 2021   21th Industrial Conference on Data Mining
Recommender Systems 2020   Data Science for Next-Generation Recommender Systems
PAKDD 2021   Pacific-Asia Conference on Knowledge Discovery and Data Mining
MLDM 2021   17th International Conference on Machine Learning and Data Mining
SOFSEM 2021   47th International Conference on Current Trends in Theory and Practice of Computer Science
IARCE 2021-Ei Compendex & Scopus 2021   2021 5th International Conference on Industrial Automation, Robotics and Control Engineering (IARCE 2021)
DLRS 2021   Call for Papers: Topical Issue on Deep Learning for Recommender Systems
CFDSP 2021   2021 International Conference on Frontiers of Digital Signal Processing (CFDSP 2021)
SI-DAMLE 2020   Special Issue on Data Analytics and Machine Learning in Education