posted by organizer: Milets_2017 || 5809 views || tracked by 8 users: [display]

KDD MiLeTS Workshop 2017 : SIGKDD Workshop on Mining and Learning from Time Series (MiLeTS 2017)

FacebookTwitterLinkedInGoogle

Link: http://www-bcf.usc.edu/~liu32/milets17/
 
When Aug 14, 2017 - Aug 14, 2017
Where Halifax, Nova Scotia, Canada
Submission Deadline May 28, 2017
Categories    machine learning   data mining   time series
 

Call For Papers

Time series data are ubiquitous. In domains as diverse as finance, entertainment, transportation and health care, we observe a fundamental shift away from parsimonious, infrequent measurement to nearly continuous monitoring and recording. Rapid advances in diverse sensing technologies, ranging from remote sensors to wearables and social sensing, are generating a rapid growth in the size and complexity of time series archives. Thus, although time series analysis has been studied extensively, its importance only continues to grow. What is more, modern time series data pose significant challenges to existing techniques (e.g., irregular sampling in hospital records and spatiotemporal structure in climate data). Finally, time series mining research is challenging and rewarding because it bridges a variety of disciplines and demands interdisciplinary solutions. Now is the time to discuss the next generation of temporal mining algorithms. The focus of MiLeTS workshop is to synergize the research in this area and discuss both new and open problems in time series analysis and mining. The solutions to these problems may be algorithmic, theoretical, statistical, or systems-based in nature. Further, MiLeTS emphasizes applications to high impact or relatively new domains, including but not limited to biology, health and medicine, climate and weather, road traffic, astronomy, and energy.
The MiLeTS workshop will discuss a broad variety of topics related to time series, including:

- Time series pattern mining and detection, representation, searching and indexing, classification, clustering, prediction, forecasting, and rule mining.
- BIG time series data.
- Hardware acceleration techniques using GPUs, FPGAs and special processors.
- Online, high-speed learning and mining from streaming time series.
- Uncertain time series mining.
- Privacy preserving time series mining and learning.
- Time series that are multivariate, high-dimensional, heterogeneous, etc., or that possess other atypical properties.
- Time series with special structure: spatiotemporal (e.g., wind patterns at different locations), relational (e.g., patients with similar diseases), hierarchical, etc.
- Time series with sparse or irregular sampling, non-random missing values, and special types of measurement noise or bias.
- Time series analysis using less traditional approaches, such as deep learning and subspace clustering.
- Applications to high impact or relatively new time series domains, such as health and medicine, road traffic, and air quality.
- New, open, or unsolved problems in time series analysis and mining.


Submission Guidelines
---------------------

Submissions should follow the SIGKDD formatting requirements and will be evaluated using the SIGKDD Research Track evaluation criteria. Preference will be given to papers that are reproducible, and authors are encouraged to share their data and code publicly whenever possible.

Note on open problem submissions: In order to promote new and innovative research on time series, we plan to accept a small number of high quality manuscripts describing open problems in time series analysis and mining. Such papers should provide a clear, detailed description and analysis of a new or open problem that poses a significant challenge to existing techniques, as well as a thorough empirical investigation demonstrating that current methods are insufficient.

Submissions will be managed via the MiLeTS 2017 EasyChair website: https://easychair.org/conferences/?conf=milets17

- Paper Submission Deadline: May 28, 2017
- Acceptance Notifications: June 16, 2017
- Camera-Ready Submission Date: Jun 28, 2017
- Workshop date: August 14, 2017

All deadlines are at 11:59 PM Pacific Standard Time.

Organizers
----------
- Yan Liu, University of Southern California
- Eamonn Keogh, University of California Riverside
- Abdullah Mueen, University of New Mexico
- Vijay Manikandan Janakiraman, NASA Ames Research Center
- Sanjay Purushotham, University of Southern California

Related Resources

IEEE-Ei/Scopus-ITCC 2025   2025 5th International Conference on Information Technology and Cloud Computing (ITCC 2025)-EI Compendex
KDD 2025   31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining
SPIE-Ei/Scopus-DMNLP 2025   2025 2nd International Conference on Data Mining and Natural Language Processing (DMNLP 2025)-EI Compendex&Scopus
KDD 2024   30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
AMLDS 2025   IEEE--2025 International Conference on Advanced Machine Learning and Data Science
IEEE-Ei/Scopus-CNIOT 2025   2025 IEEE 6th International Conference on Computing, Networks and Internet of Things (CNIOT 2025) -EI Compendex
CSITEC 2025   11th International Conference on Computer Science, Information Technology
ICSTTE 2025   2025 3rd International Conference on SmartRail, Traffic and Transportation Engineering (ICSTTE 2025)
PAKDD 2025   29th Pacific-Asia Conference on Knowledge Discovery and Data Mining
Intelligent Computing-Based Time Series 2025   Intelligent Computing: Special Issue: Intelligent Computing-Based Time Series Analysis for Cybersecurity