| |||||||||||||||
AutoML 2020 : The Fourth International Workshop on Automation in Machine Learning | |||||||||||||||
Link: https://sites.google.com/view/automl2020-workshop | |||||||||||||||
| |||||||||||||||
Call For Papers | |||||||||||||||
Workshop Overview
"Why 2020 will be the Year of Automated Machine Learning"...this was the title of a recent GigaBit Magazine article. The reason is that "AutoML represents the next stage in ML’s evolution, promising to help non-tech companies access the capabilities they need to quickly and cheaply build ML applications". However, one Harvard Business Review article highlighted the "risks of AutoML" and provided some guidance to avoid those risks. According to Forbes in December of 2018, one of the 5 Artificial Intelligence Trends To Watch Out For In 2019 is the gain in prominence of automated machine learning. The term AutoML is appearing more and more in data science discussions, publications, applications, and systems, as an aid to build better machine learning models. AutoML is being used in autonomous driving applications, sales forecasting and lead prioritization systems, and in many generic systems to generate and optimize machine learning pipelines that can select features, transform data, select the best model type and optimize hyperparameters. The debates continue regarding the level to which data science can and should be automated, the level of machine learning knowledge and expertise needed to build quality models, and the where and when manual intervention is necessary, yet the development and application of approaches and tools to automate repeated tasks continues to increase. The advancement, education, and adoption of data mining and machine learning practices require a transformation of theory to application, and feedback from application to theory. The development of tools to automate data mining efforts fosters this transformation and feedback and also promotes the development of standards and the adoption of these standards. Automated standards enable researchers and practitioners to better communicate, sharing successes and challenges in a more consistent common language. In an age of software as a service and ever-increasing scalability requirements, standards are necessary. Consistent adoption, application, and communication in turn promote research and refinement of the automated strategies and growth of the community. To keep pace with the rapidly increasing volume and rate of data generation, standardization and automating of data mining activities are critical. The challenges that must be discussed relate to the boundaries of automated tasks and individual attention needed for each unique business and data scenario. The goals of the AutoML workshop are: · To identify opportunities and challenges for automation in machine learning · To provide an opportunity for researchers to discuss best practices for automation in machine learning, potentially leading to definition of standards · To provide a forum for researchers to speak out and debate on different ideas in the area of automation in machine learning Technical Sponsors • RTP ACM Chapter https://sites.google.com/view/rtpacmchapter/home • IEEE SMC Human Perception in Multimedia Computing http://www.ieeesmc.org/technical-activities/human-machine-systems/human-perception-in-multimedia-computing Call For Content We request extended abstracts (2-4 pages) or full-length papers (up to 10 pages) be submitted by May 20, 2020. Accepted abstracts/papers will be presented as oral and/or poster presentations. Topics include (but are not limited to): • Hyperparameter autotuning of machine learning algorithms • Neural Architecture Search (NAS) • Internet of things (IoT) and automation • Automation bias and misuse • Automated methods: · in machine learning, data mining, predictive analytics, and deep learning · in autonomous vehicles · in machine learning pipelines and process flows of production systems · in big data applications · to detect fake news · for adversarial robustness · for monitoring and updating models · for streaming data · for interpretable machine learning · for large-scale modeling · for data preparation and feature engineering · for variable selection and model selection Submission Instructions Extended abstracts (2-4 pages) are required to be considered for this workshop. Full-length papers (up to 10 pages) will also be considered but are not required. Use of the ACM Proceedings Format (https://www.acm.org/publications/proceedings-template) is recommended. All submissions will be peer-reviewed. If accepted, at least one author should attend the workshop to present their work. The papers should be in PDF format and submitted via EasyChair: https://easychair.org/conferences/?conf=automl20200 Important Dates *UPDATED SUBMISSION DEADLINE *JUNE 1, 2020: Due date for paper/abstract submissions June 15, 2020: Notification of acceptance to authors July 2, 2020: Camera-ready final submission of accepted papers August 24, 2020: Workshop Contact Us For any questions, please email the organizing committee at ai.ml.automation@gmail.com |
|