posted by organizer: arindamp || 6207 views || tracked by 12 users: [display]

ParLearning 2016 : The 5th International Workshop on Parallel and Distributed Computing for Large Scale Machine Learning and Big Data Analytics

FacebookTwitterLinkedInGoogle

Link: http://parlearning.ecs.fullerton.edu/
 
When May 27, 2016 - May 27, 2016
Where Chicago, Illinois, USA
Submission Deadline Jan 15, 2016
Notification Due Feb 12, 2016
Final Version Due Feb 26, 2016
Categories    data mining   machine learning   artificial intelligence   parallel algorithms
 

Call For Papers

**********************************************************************************************
ParLearning 2016 - The 5th International Workshop on Parallel and Distributed
Computing for Large Scale Machine Learning and Big Data Analytics
http://parlearning.ecs.fullerton.edu/
May 27, 2016
Chicago, USA

in conjunction with
The 30th IEEE International Parallel & Distributed Processing Symposium (IPDPS 2016)
http://www.ipdps.org/
May 23-27, 2016
Chicago Hyatt Regency
Chicago, Illinois, USA
**********************************************************************************************

Call for Papers

Scaling up machine-learning (ML), data mining (DM) and reasoning algorithms from Artificial Intelligence (AI) for massive datasets is a major technical challenge in the times of "Big Data". The past ten years has seen the rise of multi-core and GPU based computing. In distributed computing, several frameworks such as Mahout, GraphLab and Spark continue to appear to facilitate scaling up ML/DM/AI algorithms using higher levels of abstraction. We invite novel works that advance the trio-fields of ML/DM/AI through development of scalable algorithms or computing frameworks. Ideal submissions would be characterized as scaling up X on Y, where potential choices for X and Y are provided below.

Scaling up

recommender systems
gradient descent algorithms
deep learning
sampling/sketching techniques
clustering (agglomerative techniques, graph clustering, clustering heterogeneous data)
classification (SVM and other classifiers)
SVD
probabilistic inference (bayesian networks)
logical reasoning
graph algorithms and graph mining

On

Parallel architectures/frameworks (OpenMP, OpenCL, Intel TBB)
Distributed systems/frameworks (GraphLab, Hadoop, MPI, Spark etc.)

Keynote talk

Dr. Peter Kogge, University of Notre Dame

Organizing Committee

Charalampos Chelmis, University of Southern California, USA
Sutanay Choudhury, Pacific Northwest National Laboratory, USA
Arindam Pal, TCS Innovation Labs, India
Anand Panangadan, California State University, Fullerton, USA
Weiqin Tong, Shanghai University, China
Yinglong Xia, IBM T.J. Watson Research Center, USA

Program Committee

Jaume Bacardit, Newcastle University, UK
Danny Bickson, GraphLab Inc., USA
Zhihui Du, Tsinghua University, China
Ahmed Eldawy, University of Minnesota, USA
Dinesh Garg, IBM India Research Laboratory, India
Renato Porfirio Ishii, Federal University of Mato Grosso do Sul (UFMS), Brazil
Ananth Kalyanaraman, Washington State University, USA
Joo-Young Kim, Microsoft Research, USA
Gwo Giun (Chris) Lee, National Cheng Kung University, Taiwan
Carson Leung, University of Manitoba, Canada
Arijit Mukherjee, TCS Innovation Labs, India
Debnath Mukherjee, TCS Innovation Labs, India
Francesco Parisi, University of Calabria, Italy
Himadri Sekhar Paul, TCS Innovation Labs, India
Chandan Reddy, Wayne State University, USA
Gautam Shroff, TCS Innovation Labs, India
Aniruddha Sinha, TCS Innovation Labs, India
Najjar Walid, University of California, Riverside
Zhuang Wang, Facebook, USA
Naixue Xiong, Colorado Technical University, USA
Jianting Zhang, City College of New York, USA

Important Dates

Paper submission: January 22, 2016 AoE
Notification: February 12, 2016
Camera Ready: February 26, 2016

Paper Guidelines

Submitted manuscripts may not exceed 6-10 single-spaced double-column pages using 10-point size font on 8.5x11 inch pages (IEEE conference style), including figures, tables, and references. Format requirements are posted on the IEEE IPDPS web page.

All submissions must be uploaded electronically at http://edas.info/newPaper.php?c=21782

Related Resources

SPIE-Ei/Scopus-DMNLP 2025   2025 2nd International Conference on Data Mining and Natural Language Processing (DMNLP 2025)-EI Compendex&Scopus
IEEE-Ei/Scopus-SGGEA 2024   2024 Asia Conference on Smart Grid, Green Energy and Applications (SGGEA 2024) -EI Compendex
PCDS 2024   The 1st International Symposium on Parallel Computing and Distributed Systems
Ei/Scopus-ACAI 2024   2024 7th International Conference on Algorithms, Computing and Artificial Intelligence(ACAI 2024)
PDP 2025   Parallel, Distributed and Network-Based Processing
MobiCASE 2025   16th EAI International Conference on Mobile Computing, Applications and Services
IEEE Big Data - MMAI 2024   IEEE Big Data 2024 Workshop on Multimodal AI
MLMI 2025   2025 The 8th International Conference on Machine Learning and Machine Intelligence (MLMI 2025)
SPIE-Ei/Scopus-CMLDS 2025   2025 2nd International Conference on Computing, Machine Learning and Data Science (CMLDS 2025) -EI Compendex & Scopus
IEEE-Ei/Scopus-ACEPE 2024   2024 IEEE Asia Conference on Advances in Electrical and Power Engineering (ACEPE 2024) -Ei Compendex