posted by organizer: zhangyudong || 1137 views || tracked by 1 users: [display]

DPAITI 2023 : Data Processing with Artificial Intelligence in Thermal Imagery

FacebookTwitterLinkedInGoogle

Link: https://www.mdpi.com/journal/jimaging/special_issues/99DQ689958
 
When N/A
Where N/A
Submission Deadline Nov 30, 2023
Notification Due Dec 30, 2023
Final Version Due Jan 30, 2024
Categories    data processing   artificial iintelligence   thermal imagery
 

Call For Papers

Dear Colleagues,

Thermal imaging possesses various advantages over the visible light spectrum, allowing us to not only address challenging lighting conditions (e.g., poor lighting [1]), but also reveal information invisible to the naked eye [2]. For this reason, this imaging domain is continuously gaining more popularity across a broad variety of markets, e.g., in the automotive industry for scene understanding [3] and driver monitoring [4]; in the medical field for evaluation of skin conditions [5] or vital sign extraction [6]; and for smart vision in surveillance [7] and border control [8] applications, just to name a few.

At the same time, it is important to note that thermal imagery has different characteristics than visible light data [9]. First, due to the heat flow in objects, thermal images are more blurred with smooth borders between objects and there is an absence of high-frequency components such as edges and textures [10]; frequently, the lack of color data also makes image processing more challenging [11]. Secondly, ranges of thermal sensors are usually shorter than in the case of standard cameras, allowing them to capture only close-proximity scenes. Finally, the resolution of such data is usually lower due to the higher cost of imaging sensors [12].

Although the research in artificial intelligence is progressing at warp speed, only a few studies have focused on imaging domains other than RGB. Furthermore, models are usually designed with visible light spectrum data in mind, assuming that high-frequency components are present in the input data, which are then directly applied to other datasets. However, this frequently leads to worse accuracy [13,14], as such networks cannot capture specific data characteristics, e.g., more distant relationships between object components in thermal images that require bigger receptive fields [15].

Taking this into account, this Special Issue focuses on increasing the community's awareness of the importance of thermal imagery, its benefits and challenges, as well as the need for careful analysis and design of AI solutions with specific data domains in mind. Proposals addressing various research topics are welcome, including, but not limited to:

Thermal imaging applications in medicine, automotive, aerospace, robotics, and surveillance industries, among others.
AI design for thermal imagery including Neural Architecture Search for domain-specific tasks.
Data translation between imaging domains.
Thermal data generation using AI.

Dr. Alicja Kwasniewska
Dr. M. Hamed Mozaffari
Prof. Dr. Yudong Zhang
Guest Editors

Related Resources

NATAP 2026   9th International Conference on Natural Language Processing and Trends
Ei/Scopus-CWCBD 2026   2026 7th International Conference on Wireless Communication and Big Data (CWCBD 2026)
NLPAI 2026   4th International Conference on NLP & AI
GLOW@WWW 2026   Graph-enhanced LLMs for trustwOrthy Web data management
PAKDD 2026   30th Pacific-Asia Conference on Knowledge Discovery and Data Mining
AIVRID 2025   2025 International Conference on Artificial Intelligence, Virtual Reality and Interaction Design
AIME 2026   24th International Conference on Artificial Intelligence in Medicine
IJCAI 2026   35th International Joint Conference on Artificial Intelligence
SAIM 2026   7th International Conference on Soft Computing, Artificial Intelligence and Machine Learning
ACII 2026   Advanced Computational Intelligence: An International Journal