| |||||||||||||||||
LD4IE 2015 : CFP: Linked Data for Information Extraction LD4IE2015 - workshop at @ISWC2015 | |||||||||||||||||
Link: http://oak.dcs.shef.ac.uk/ld4ie2015 | |||||||||||||||||
| |||||||||||||||||
Call For Papers | |||||||||||||||||
LD4IE 2015
The 3rd international Workshop on Linked Data for Information Extraction also hosting the 2nd Challenge on Linked Data for Information Extraction in conjunction with The 14th International Semantic Web Conference (ISWC 2015) Bethlehem - Pennsylvania, USA October 11-15, 2015 http://iswc2015.semanticweb.org/ Workshop website: http://oak.dcs.shef.ac.uk/ld4ie2015/ Twitter: @LD4IE2015 #LD4IE #LD4IE2015 Facebook page: Ld4ie2015 (at https://www.facebook.com/Ld4ie2014) *************** Call for Papers *************** This workshop focuses on the exploitation of Linked Data for Web Scale Information Extraction (IE), which concerns extracting structured knowledge from unstructured/semi-structured documents on the Web. One of the major bottlenecks for the current state of the art in IE is the availability of learning materials (e.g., seed data, training corpora), which, typically are manually created and are expensive to build and maintain. Linked Data (LD) defines best practices for exposing, sharing, and connecting data, information, and knowledge on the Semantic Web using uniform means such as URIs and RDF. It has so far been created a gigantic knowledge source of Linked Open Data (LOD), which constitutes a mine of learning materials for IE. However, the massive quantity requires efficient learning algorithms and the not guaranteed quality of data requires robust methods to handle redundancy and noise. LD4IE intends to gather researchers and practitioners to address multiple challenges arising from the usage of LD as learning material for IE tasks, focusing on (i) modelling user defined extraction tasks using LD; (ii) gathering learning materials from LD assuring quality (training data selection, cleaning, feature selection etc.); (iii) robust learning algorithms for handling LD; (iv) publishing IE results to the LOD cloud. *************** Research Topics *************** Topics of interest include, but are **not limited to**: Modelling Extraction Tasks * modelling extraction tasks (e.g. defining IE templates using LD ontologies) * extracting and building knowledge patterns based on LD * user friendly approaches for querying LD Information Extraction * selecting relevant portions of LD as training data * selecting relevant knowledge resources from LD * IE methods robust to noise in LD as training data * IE tasks/applications exploiting LD (Wrapper induction, Table interpretation, IE from unstructured data, Named Entity Recognition, Relation Extraction, Topic Modelling…) * linking extracted information to existing LD datasets Linked Data for Learning * assessing the quality of LD data for training * select optimal subset of LD to seed learning * managing heterogeneity, incompleteness, noise, and uncertainty of LD * scalable learning methods using LD * pattern extraction from LD Special interest: IE using Web Data Commons corpus * any IE tasks using (part of) the Web Data Commons corpus [1] IE challenge * a system participating to the LD4IE2015 Information Extraction Challenge [2] [1] http://webdatacommons.org/structureddata/ [2] http://oak.dcs.shef.ac.uk/ld4ie2015/LD4IE2015/IE_challenge.html ******************** Awards ******************* * Best research paper(s) from LD4IE will be invited to submit an extended version to the International Journal on Semantic Web and Information Systems (IJSWIS) http://www.ijswis.org/ * Best performing IE challenge solution will be awarded a Springer voucher worth 250 Euros *************** Important Dates *************** Abstract submission deadline: asap before paper deadline! Research Paper submission deadline: NEW deadline ** July 8, 2015 ** Challenge Paper submission deadline: July 15, 2015 Acceptance Notification: July 31, 2015 Camera-ready versions: August 7, 2015 Workshop date: to be announced (11/12 October 2015) *************** Submission ******************** We accept the following formats of submissions: * Full paper with a maximum of 12 pages including references * Short paper with a maximum of 6 pages including references * IE challenge paper with a maximum of 4 pages including references Two formats are possible for the submission: PDF and HTML. All submissions must be written in English. PDF submissions must be formatted according to the information for LNCS Authors (http://www.springer.com/computer/lncs?SGWID=0-164-6-793341-0.). We would like to encourage you to submit your paper as HTML, in which case you need to submit a zip archive containing an HTML file and all used resources. If you are new to HTML submission these are good places to start: * Linked Research: Example paper using LNCS layout is at http://linked-research.270a.info/ * Research Articles in Simplified HTML (RASH) format: with the additional stylesheets and scripts included in the style package for guaranteeing a correct visualisation of the document on browsers. The documentation of the format is also available online. The translation from RASH submission into the appropriate publishing format (i.e., LNCS LaTeX) and its conversion into PDF for the official proceedings of the workshop will be handled by us through a semi-automatic process. In order to check if your HTML submission is compliant with the page limit constraint, you can simply use one of the LNCS layouts and printing/storing it as PDF. Please submit your contributions electronically in PDF or HTML format to EasyChair at https://www.easychair.org/conferences/?conf=ld4ie2015 When submitting your paper, select the appropriate topic between: * Research - long paper * Research - short paper * IE Challenge paper Accepted papers will be published online via CEUR-WS. *************** Workshop Chairs *************** Anna Lisa Gentile, University of Sheffield, UK Claudia d'Amato, University of Bari, Italy Ziqi Zhang, University of Sheffield, UK Heiko Paulheim, University of Mannheim, Germany ********* IE Challenge Organization *********** Robert Meusel, University of Mannheim, Germany Heiko Paulheim, University of Mannheim, Germany Ziqi Zhang, University of Sheffield, UK |
|