posted by user: doublet || 166793 views || tracked by 364 users: [display]

KDD 2015 : 21th ACM SIGKDD Conference on Knowledge Discovery and Data Mining

FacebookTwitterLinkedInGoogle


Conference Series : Knowledge Discovery and Data Mining
 
Link: http://www.kdd.org/kdd2015/
 
When Aug 10, 2015 - Aug 13, 2015
Where Sydney, Australia
Submission Deadline Feb 20, 2015
Notification Due May 12, 2015
Categories    data mining   knowledge discovery
 

Call For Papers

We invite submission of papers describing innovative research on all aspects of knowledge discovery and data mining, ranging from theoretical foundations to novel models and algorithms for data mining problems in science, business, medicine, and engineering. Visionary papers on new and emerging topics are also welcome, as are application-oriented papers that make innovative technical contributions to research. Authors are explicitly discouraged from submitting incremental results that do not provide significant advances over existing approaches.

Papers submitted to the Research Track are solicited in all areas of data mining, knowledge discovery, and large-scale data analytics, including, but not limited to:

Big Data: Efficient and distributed data mining platforms and algorithms, systems for large-scale data analytics of textual and graph data, large-scale machine learning systems, distributed computing (cloud, map-reduce, MPI), large-scale optimization, and novel statistical techniques for big data.

Data Science: Methods for analyzing scientific data, business data, social network analysis, recommender systems, mining sequences, time series analysis, online advertising, bioinformatics, systems biology, text/web analysis, mining temporal and spatial data, and multimedia processing.

Foundations of Data Mining: Data mining methodology, data mining model selection, visualization, asymptotic analysis, information theory, security and privacy, graph and link mining, rule and pattern mining, web mining, dimensionality reduction and manifold learning, combinatorial optimization, relational and structured learning, matrix and tensor methods, classification and regression methods, semi-supervised learning, and unsupervised learning and clustering.

Related Resources

KDD 2026   32nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining
Ei/Scopus-ITCC 2026   2026 6th International Conference on Information Technology and Cloud Computing (ITCC 2026)
PAKDD 2026   30th Pacific-Asia Conference on Knowledge Discovery and Data Mining
AMLDS 2026   IEEE--2026 2nd International Conference on Advanced Machine Learning and Data Science
Ei/Scopus-CMLDS 2026   2026 3rd International Conference on Computing, Machine Learning and Data Science (CMLDS 2026)
KDD 2025   31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining
IEEE-Ei/Scopus-ICISC 2026   2025 6th International Conference on Intelligent System and Computing (ICISC 2026)
ICDM 2026   International Conference on Data Mining
WSDM 2026   19th ACM International Conference on Web Search and Data Mining
IEEE-ICECCS 2026   2025 IEEE International Conference on Electronics, Communications and Computer Science (ICECCS 2026)