posted by user: xinghao || 9787 views || tracked by 19 users: [display]

Big Learning 2013 : NIPS 2013 Workshop on Big Learning: Advances in Algorithms and Data Management

FacebookTwitterLinkedInGoogle

Link: http://biglearn.org/
 
When Dec 9, 2013 - Dec 9, 2013
Where Lake Tahoe, NV
Submission Deadline Oct 25, 2013
Categories    big data   machine learning   database systems   artificial intelligence
 

Call For Papers

*Submission deadline extended to Oct 25, 2013*

Big Learning 2013: Advances in Algorithms and Data Management
NIPS 2013 Workshop (http://www.biglearn.org)

ORGANIZERS:

Xinghao Pan (UC Berkeley)
Haijie Gu (Carnegie Mellon University)
Joseph Gonzalez (UC Berkeley)
Sameer Singh (University of Washington)
Yucheng Low (GraphLab)

Submissions are solicited for a one day workshop on December 9th at Lake Tahoe, Nevada.

This workshop will address algorithms, systems, and real-world problem domains related to large-scale machine learning (“Big Learning”). Big Learning has attracted intense interest, with active research spanning diverse fields. In particular, the machine learning and databases have taken distinct approaches by developing new algorithms and data management systems. This workshop will bring together experts across these diverse communities to discuss recent progress, share tools and software, identify pressing new challenges, and to exchange new ideas. Topics of interest include (but are not limited to):

- Scalable Data Systems: Systems for large-scale parallel or distributed learning; implementations of machine learning models and algorithms in database management systems (DBMS); insights and discussions on properties (availability, scalability, correctness, etc.), strengths, and limitations of databases for Big Learning.

- Big Data: Methods for managing large, unstructured, and/or streaming data; cleaning, visualization, interactive platforms for data understanding and interpretation; sketching and summarization techniques; sources of large datasets.

- Models & Algorithms: Machine learning algorithms for parallel, distributed, GPGPUs, or other novel architectures; theoretical analysis; distributed online algorithms; implementation and experimental evaluation; methods for distributed fault tolerance.

- Applications of Big Learning: Practical application studies and challenges of real-world system building; insights on end-users, common data characteristics (stream or batch); trade-offs between labeling strategies (e.g., curated or crowd-sourced).

Submissions should be written as extended abstracts, no longer than 4 pages (excluding references) in the NIPS latex style. Relevant work previously presented in non-machine-learning conferences is strongly encouraged, though submitters should note this in their submission.

Submission Deadline: October 25th, 2013.

Please refer to the website for detailed submission instructions: http://biglearn.org/index.php/AuthorInfo

Related Resources

AMNA 2026   2026 5th International Conference on Algorithms, Microchips, and Network Applications
Ei/Scopus-ITCC 2026   2026 6th International Conference on Information Technology and Cloud Computing (ITCC 2026)
AUEN 2026   5th International Conference on Automation and Engineering
AMLDS 2026   IEEE--2026 2nd International Conference on Advanced Machine Learning and Data Science
IEEE Big Data - MMAI 2025   IEEE Big Data 2025 Workshop on Multimodal AI
Ei/Scopus-CEICE 2026   2026 3rd International Conference on Electrical, Information and Communication Engineering (CEICE 2026)
ICHBC 2025   2025 5th International Conference on High Performance Computing, Big Data and Communication Engineering
AAIML 2026   IEEE--2026 International Conference on Advances in Artificial Intelligence and Machine Learning
BDEIM 2025   2025 6th International Conference on Big Data Economy and Information Management
Ei/Scopus-CMLDS 2026   2026 3rd International Conference on Computing, Machine Learning and Data Science (CMLDS 2026)