posted by user: shamim || 14313 views || tracked by 11 users: [display]

Spinger MMSJ: DL MM healthcare 2020 : Deep Learning for Multimedia Healthcare

FacebookTwitterLinkedInGoogle

Link: https://www.springer.com/journal/530/updates/18091228
 
When N/A
Where N/A
Submission Deadline Dec 15, 2020
Notification Due Feb 15, 2021
Final Version Due Apr 15, 2021
Categories    multimedia   deep learning   healthcare   COVID-19
 

Call For Papers

Special Issue on
Deep Learning for Multimedia Healthcare

Springer Multimedia Systems Journal

Scope
Digital health generates a huge amount of multimedia healthcare data in the form of text, radiological images, audio, video and so forth. Since the start of the COVID-19 pandemic, we have witnessed an incremental increase in the present healthcare data. Such large-scale multimedia healthcare data creates challenges and opportunities for multimedia healthcare data analysis. AI, and more specifically as deep learning (DL) algorithms, have been widely used by researchers for handling the massive volume of epidemic data, predicting the live epidemic crisis and initiating new research directions to analyze healthcare multimedia data. Therefore, deep learning for multimedia healthcare data analysis is becoming an emerging research area in the field of multimedia and computer vision.

This special issue is intended to report high-quality research on recent advances in Deep Learning for multimedia healthcare, specifically state-of-the-art approaches, methodologies, and systems for the design, development, deployment, and innovative use of those convergent technologies for providing insights into multimedia healthcare service demands. Authors are solicited to submit unpublished papers in the following topics. Topic include but are not restricted to:

• DL-based multimedia healthcare data analysis
• Multimedia healthcare data fusion for speedy detection and diagnosis for infectious diseases
• DL-based patient monitoring and predicting the spread of infectious diseases
• DL-based techniques, algorithms, and methods to monitor and track casualties and contacts of epidemic diseases
• DL-based multimedia big data analysis for tracking infections, and health monitoring
• DL-based detection of COVID-19 patients
• Advanced DL-based medical image analysis techniques for long-term and short-term risk prediction of infectious diseases
• DL-driven infected patient monitoring though the analysis of chest CT and RT-PCR
• DL for Lung and infection segmentation for epidemic diseases
• Data collections, benchmarking, and performance evaluation for DL-driven multimedia healthcare

Related Resources

IEEE-Ei/Scopus-ITCC 2025   2025 5th International Conference on Information Technology and Cloud Computing (ITCC 2025)-EI Compendex
SPIE-Ei/Scopus-DMNLP 2025   2025 2nd International Conference on Data Mining and Natural Language Processing (DMNLP 2025)-EI Compendex&Scopus
CVAI 2026   2026 International Symposium on Computer Vision and Artificial Intelligence (CVAI 2026)
AMLDS 2025   IEEE--2025 International Conference on Advanced Machine Learning and Data Science
CSITEC 2025   11th International Conference on Computer Science, Information Technology
21st AIAI 2025   21st (AIAI) Artificial Intelligence Applications and Innovations
ICSTTE 2025   2025 3rd International Conference on SmartRail, Traffic and Transportation Engineering (ICSTTE 2025)
ICMLSC 2025   2025 The 9th International Conference on Machine Learning and Soft Computing (ICMLSC 2025)
25th EANN/EAAAI 2025   25th (EANN/EAAAI) Engineering Applications and Advances of of Artificial Intelligence
IEEE-Ei/Scopus-CNIOT 2025   2025 IEEE 6th International Conference on Computing, Networks and Internet of Things (CNIOT 2025) -EI Compendex