posted by user: shicheng || 9568 views || tracked by 22 users: [display]

IJSIR 2014 : IJSIR Special Issue on Swarm Intelligence in Big Data Analytics

FacebookTwitterLinkedInGoogle

 
When N/A
Where N/A
Submission Deadline Jan 1, 2014
Categories    swarm intelligence   big data analytics   evolutionary computation   data mining
 

Call For Papers

Nowadays, the big data has attracted attentions from more and more researchers. The big data is defined as the dataset whose size is beyond the processing ability of typical database or computers. The big data analytics is to automatically extract knowledge from large amounts of data. It can be seen as mining or processing of massive data, and “useful” information could be retrieved from large dataset. The properties of big data analytics can be concentrated in three parts: large volume, variety of different sources, and fast increasing speed, i.e., velocity. The algorithms should be effective to solve large-scale, dynamic the big data analytics problems.

Swarm intelligence (SI), which is based on a population of individuals, is a collection of nature-inspired searching techniques. To search a problem domain, a swarm intelligence algorithm processes a population of individuals. Each individual represents a potential solution of the problem being optimized. In swarm intelligence, an algorithm maintains and successively improves a population of potential solutions until some stopping condition is met. The solutions are initialized randomly in the search space, and are guided toward the better and better areas through the interaction among solutions over iterations.

The swarm intelligence algorithms have shown significant achievements on solving large scale, dynamical, and multi-objective problems. With the application of the swarm intelligence, more rapid and effective methods can be designed to solve big data analytics problems.

This special issue aims at fostering the latest development of Swarm Intelligence Techniques for Big Data analytics problems. Original contributions that provide novel theories, frameworks, and solutions to challenging problems of Big Data analytics are very welcome for this Special Issue. Potential topics include, but are not limited to:

The use of swarm intelligence techniques such as:
1. Ant colony optimization
2. Artificial immune system
3. Brain Storm Optimization
4. Cultural algorithm
5. Differential Evolution
6. Fireworks Algorithm
7. Particle swarm optimization
In / for
1. Active learning on big data
2. Advertising on the Web
3. Anomaly detection in big data
4. Data size and feature space adaptation
5. Distributed learning techniques in uncertain environment
6. Distributed parallel computation
7. Feature selection/extraction in big data
8. Frequent Itemsets Analysis
9. Imbalance learning on big data
10. Incremental Learning
11. Link Analysis
12. Sample selection based on uncertainty
13. Uncertainty in cloud computing
14. Uncertainty modeling in learning from big data
15. Uncertainty techniques in big data classification/clustering
16. Massive data categorization/Clustering
17. Mining Data Streams
18. Mining Social-Network Graphs
19. Recommendation Systems
20. Reinforcement learning on big data

Manuscripts must be prepared according to the instructions of the “Guidelines for Submission” of the journal, available at: http://www.igi-global.com/journals/guidelines-for-submission.aspx.
Please submit your papers via emails to one of guest co-editors, Dr. Shi Cheng at shi.cheng@nottingham.edu.cn, or Dr. Ruibin Bai at ruibin.bai@nottingham.edu.cn. Submitted papers will be reviewed by at least three reviewers. The submission of a manuscript implies that it is the authors' original unpublished work and has not being submitted for possible publication elsewhere.

Important Date
January 1, 2014: Submission deadline.
March 1, 2014: Notice of the first round review.
April 1, 2014: Revision due
May 1, 2014: Final notice of acceptance/reject
June 1, 2014: Final manuscript due.

Guest Editors
Dr. Shi Cheng, University of Nottingham Ningbo, China.
Email: shi.cheng@nottingham.edu.cn
Dr. Ruibin Bai, University of Nottingham Ningbo, China.
Email: ruibin.bai@nottingham.edu.cn
Dr. Kay Chen Tan, National University of Singapore.
Email: eletankc@nus.edu.sg

Related Resources

IEEE-Ei/Scopus-ITCC 2025   2025 5th International Conference on Information Technology and Cloud Computing (ITCC 2025)-EI Compendex
SPIE-Ei/Scopus-DMNLP 2025   2025 2nd International Conference on Data Mining and Natural Language Processing (DMNLP 2025)-EI Compendex&Scopus
IEEE-Ei/Scopus-CNIOT 2025   2025 IEEE 6th International Conference on Computing, Networks and Internet of Things (CNIOT 2025) -EI Compendex
IEEE BDAI 2025   IEEE--2025 the 8th International Conference on Big Data and Artificial Intelligence (BDAI 2025)
PAKDD 2025   29th Pacific-Asia Conference on Knowledge Discovery and Data Mining
DATA ANALYTICS 2025   The Fourteenth International Conference on Data Analytics
AMLDS 2025   IEEE--2025 International Conference on Advanced Machine Learning and Data Science
IEEE AMCAI 2025   IEEE Afro-Mediterranean Conference on Artificial Intelligence
BDAI 2025   IEEE--2025 the 8th International Conference on Big Data and Artificial Intelligence (BDAI 2025)
MAT 2024   10th International Conference of Advances in Materials Science and Engineering