posted by organizer: inesgomes || 1568 views || tracked by 3 users: [display]

AutoML 2025 : AutoML Conference 2025

FacebookTwitterLinkedInGoogle

Link: https://2025.automl.cc/
 
When Sep 8, 2025 - Sep 11, 2025
Where New York City, USA
Submission Deadline Mar 31, 2025
Notification Due May 13, 2025
Categories    automl   machine learning   hyperparameter optimization   neural architecture search
 

Call For Papers

We welcome submissions on any topic touching upon automating any aspect of machine learning, broadly interpreted. If there is any question of fit, please feel free to contact the program chairs.

This year’s conference will have two parallel tracks: one on AutoML methods and one on applications, benchmarks, challenges, and datasets (ABCD) for AutoML. Papers accepted to either track will comprise the conference program on equal footing.

The following non-exhaustive lists provide examples of work in scope for each of these tracks:

**Methods Track**
- model selection (e.g., neural architecture search, ensembling)
- configuration/tuning (e.g., via evolutionary algorithms, Bayesian optimization)
- AutoML methodologies (e.g., reinforcement learning, meta-learning, in-context learning, warmstarting, portfolios, multi-objective optimization, constrained optimization)
- pipeline automation (e.g., automated data wrangling, feature engineering, pipeline synthesis, and configuration)
- automated procedures for diverse data (e.g., tabular, relational, multimodal, etc.)
- ensuring quality of results in AutoML (e.g., fairness, interpretability, trustworthiness, sustainability, robustness, reproducibility)
- supporting analysis and insight from automated systems
- context/prompt optimization
- dataset distillation / data selection / foundation datasets
- AutoML for multi-objective optimization
- Large language models
- etc.

**ABCD Track**

→ see also https://2024.automl.cc/?page_id=625 for more details

- Applications: open-source AutoML software and applications in this category that help us bridge the gap between theory and practice
- Benchmarks: submissions to further enhance the quality of benchmarking in AutoML
- Challenges: design, visions, analyses, methods and best practices for future and past challenges
- Datasets: new datasets, collections of datasets, or meta-datasets that open up new avenues of AutoML research

Related Resources

Ei/Scopus-ITCC 2026   2026 6th International Conference on Information Technology and Cloud Computing (ITCC 2026)
AMLDS 2026   IEEE--2026 2nd International Conference on Advanced Machine Learning and Data Science
Ei/Scopus-CEICE 2026   2026 3rd International Conference on Electrical, Information and Communication Engineering (CEICE 2026)
AAIML 2026   IEEE--2026 International Conference on Advances in Artificial Intelligence and Machine Learning
Ei/Scopus-CMLDS 2026   2026 3rd International Conference on Computing, Machine Learning and Data Science (CMLDS 2026)
CACML 2026   2026 5th Asia Conference on Algorithms, Computing and Machine Learning (CACML 2026)
ICIAI 2026   2026 the 10th International Conference on Innovation in Artificial Intelligence (ICIAI 2026)
KDD 2026   32nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining
CFP-CIPCV-EI/SCOPUS 2026   The 2026 4th International Conference on Intelligent Perception and Computer Vision
SPRA 2026   SPIE--2026 6th Symposium on Pattern Recognition and Applications (SPRA 2026)