posted by organizer: felician || 1720 views || tracked by 6 users: [display]

NYC-2024-ML 2024 : New York Annual Conference on Machine Learning 2024

FacebookTwitterLinkedInGoogle

Link: https://conferences.americademic.org/NYC-2024-ML/index.html
 
When Dec 14, 2024 - Dec 15, 2024
Where New York, USA
Submission Deadline May 31, 2024
Notification Due Jun 10, 2024
Final Version Due Jun 30, 2024
Categories    machine learning   supervised learning   unsupervised learning   reinforcement learning
 

Call For Papers

Topics of interest for submission include but are not limited to:
Machine learning

Supervised learning
Ranking
Supervised learning by classification
Supervised learning by regression
Structured outputs
Cost-sensitive learning
Unsupervised learning
Cluster analysis
Anomaly detection
Mixture modeling
Topic modeling
Source separation
Motif discovery
Dimensionality reduction and manifold learning
Reinforcement learning
Sequential decision making
Inverse reinforcement learning
Apprenticeship learning
Multi-agent reinforcement learning
Adversarial learning
Multi-task learning
Transfer learning
Lifelong machine learning
Learning under covariate shift
Learning settings
Batch learning
Online learning settings
Learning from demonstrations
Learning from critiques
Learning from implicit feedback
Active learning settings
Semi-supervised learning settings
Machine learning approaches
Classification and regression trees
Kernel methods
Support vector machines
Gaussian processes
Neural networks
Logical and relational learning
Inductive logic learning
Statistical relational learning
Learning in probabilistic graphical models
Maximum likelihood modeling
Maximum entropy modeling
Maximum a posteriori modeling
Mixture models
Latent variable models
Bayesian network models
Learning linear models
Perceptron algorithm
Factorization methods
Non-negative matrix factorization
Factor analysis
Principal component analysis
Canonical correlation analysis
Latent Dirichlet allocation
Rule learning
Instance-based learning
Markov decision processes
Partially-observable Markov decision processes
Stochastic games
Learning latent representations
Deep belief networks
Bio-inspired approaches
Artificial life
Evolvable hardware
Genetic algorithms
Genetic programming
Evolutionary robotics
Generative and developmental approaches
Machine learning algorithms
Dynamic programming for Markov decision processes
Value iteration
Q-learning
Policy iteration
Temporal difference learning
Approximate dynamic programming methods
Ensemble methods
Boosting
Bagging
Spectral methods
Feature selection
Regularization
Cross-validation

Related Resources

IEEE-Ei/Scopus-ITCC 2025   2025 5th International Conference on Information Technology and Cloud Computing (ITCC 2025)-EI Compendex
IEEE CACML 2025   2025 4th Asia Conference on Algorithms, Computing and Machine Learning (CACML 2025)
SPIE-Ei/Scopus-DMNLP 2025   2025 2nd International Conference on Data Mining and Natural Language Processing (DMNLP 2025)-EI Compendex&Scopus
IEEE-Ei/Scopus-CNIOT 2025   2025 IEEE 6th International Conference on Computing, Networks and Internet of Things (CNIOT 2025) -EI Compendex
AMLDS 2025   IEEE--2025 International Conference on Advanced Machine Learning and Data Science
CETA--EI 2025   2025 4th International Conference on Computer Engineering, Technologies and Applications (CETA 2025)
IEEE-Ei/Scopus-CWCBD 2025   2025 6th International Conference on Wireless Communications and Big Data (CWCBD 2025) -EI Compendex
ICPRS 2025   15th International Conference on Pattern Recognition Systems
FAIML 2025   2025 4th International Conference on Frontiers of Artificial Intelligence and Machine Learning