posted by user: Aholzinger || 6563 views || tracked by 8 users: [display]

PAML 2017 : Privacy Aware Machine Learning

FacebookTwitterLinkedInGoogle

Link: http://hci-kdd.org/privacy-aware-machine-learning-for-data-science-2
 
When Sep 1, 2017 - Sep 1, 2017
Where Reggio di Calabria
Submission Deadline Apr 1, 2017
Notification Due May 1, 2017
Final Version Due Jun 1, 2017
Categories    machine learning   privacy   open data   data science
 

Call For Papers

Machine learning is the fastest growing field in computer science [Jordan, M. I. & Mitchell, T. M. 2015. Machine learning: Trends, perspectives, and prospects. Science, 349, (6245), 255-260], and it is well accepted that health informatics is amongst the greatest challenges [LeCun, Y., Bengio, Y. & Hinton, G. 2015. Deep learning. Nature, 521, (7553), 436-444 ], e.g. large-scale aggregate analyses of anonymized data can yield valuable insights addressing public health challenges and provide new avenues for scientific discovery [Horvitz, E. & Mulligan, D. 2015. Data, privacy, and the greater good. Science, 349, (6245), 253-255]. Privacy is becoming a major concern for machine learning tasks, which often operate on personal and sensitive data. Consequently, privacy, data protection, safety, information security and fair use of data is of utmost importance for health data science.
Research topics covered by this special session include but are not limited to the following topics:

– Production of Open Data Sets
– Synthetic data sets for learning algorithm testing
– Privacy preserving machine learning, data mining and knowledge discovery
– Data leak detection
– Data citation
– Differential privacy
– Anonymization and pseudonymization
– Securing expert-in-the-loop machine learning systems
– Evaluation and benchmarking

This special session will bring together scientists with diverse background, interested in both the underlying theoretical principles as well as the application of such methods for practical use in the biomedical, life sciences and health care domain. The cross-domain integration and appraisal of different fields will provide an atmosphere to foster different perspectives and opinions; it will offer a platform for novel crazy ideas and a fresh look on the methodologies to put these ideas into business.

Accepted Papers will be published in a Springer Lecture Notes in Computer Science LNCS Volume.

Related Resources

Ei/Scopus- CCRIS 2025   2025 IEEE 6th International Conference on Control, Robotics and Intelligent System (CCRIS 2025)
IEEE-Ei/Scopus-ITCC 2025   2025 5th International Conference on Information Technology and Cloud Computing (ITCC 2025)-EI Compendex
S+SSPR 2026   Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition and Structural and Syntactic Pattern Recognition
Ei/Scopus-IPCML 2025   2025 International Conference on Image Processing, Communications and Machine Learning (IPCML 2025)
IEEE CNCIT 2025   2025 4th International Conference on Networks, Communications and Information Technology (CNCIT 2025)
AIAT 2025   2025 5th International Conference on Artificial Intelligence and Application Technologies (AIAT 2025)
ICPRS 2025   15th International Conference on Pattern Recognition Systems
AMLDS 2025   IEEE--2025 International Conference on Advanced Machine Learning and Data Science
ICCR 2025   2025 7th International Conference on Control and Robotics (ICCR 2025)
ACM SAC 2025   40th ACM/SIGAPP Symposium On Applied Computing