posted by user: program1011 || 6726 views || tracked by 4 users: [display]

CMMM 2020 : Special Issue on Machine Learning Applications in Single-Cell RNA Sequencing Data

FacebookTwitterLinkedInGoogle

Link: https://www.hindawi.com/journals/cmmm/si/810784/
 
When N/A
Where N/A
Submission Deadline Apr 23, 2021
Categories    machine learning   deep learning   bioinformatics
 

Call For Papers

The invention of single-cell RNA sequencing (scRNA-seq) has led to the generation of tremendous amounts of data pertaining to populations of cells of specific interest. However, one of the major challenges associated with analysing such data includes designing efficient machine learning approaches that can cope with the noise and sparsity existing in data.

Examples of machine learning applications for scRNA-seq data include: identifying biomarkers of dementia and Alzheimer’s disease; identifying candidate drugs for numerous other neurological disorders; identifying putative cell types from scRNA-seq data of various diseases; noise filtering of low quality cells; pseudo-time reconstruction; and proposals of new clustering methods for scRNA-seq. The success behind machine learning applications depends on the development of new machine learning techniques.

This Special Issue invites not only machine learning researchers, but also researchers interested in potential applications to scRNA-seq data. Both research and review articles pertaining to new machine learning methods and applications to the interpretation of scRNA-seq data are welcomed.

Potential topics include but are not limited to the following:

Supervised learning
Unsupervised learning
Semi-supervised learning
Active learning
Transfer and multitask learning
Ranking
Deep learning
Representation learning
Parallel and distributed learning approaches
Distance learning
Ensemble methods
Dimensionality reduction methods

Lead Editor
* Turki Turki, Department of Computer Science, King Abdulaziz University, Jeddah, Saudi Arabia. Contact Email: tturki@kau.edu.sa

Guest Editors
* Y-h. Taguchi, Department of Physics, Chuo University, Tokyo, Japan. Contact Email: tag@granular.com
* Sanjiban Sekhar Roy, School of Computer Science and Engineering, Vellore Institute of Technology, India, Contact Email: sanjibanroy09@gmail.com

Related Resources

CETA--EI 2025   2025 4th International Conference on Computer Engineering, Technologies and Applications (CETA 2025)
IEEE-Ei/Scopus-ITCC 2025   2025 5th International Conference on Information Technology and Cloud Computing (ITCC 2025)-EI Compendex
CSITEC 2025   11th International Conference on Computer Science, Information Technology
AMLDS 2025   IEEE--2025 International Conference on Advanced Machine Learning and Data Science
MobiCASE 2025   16th EAI International Conference on Mobile Computing, Applications and Services
SPIE-Ei/Scopus-DMNLP 2025   2025 2nd International Conference on Data Mining and Natural Language Processing (DMNLP 2025)-EI Compendex&Scopus
LSIJ 2024   Life Sciences: an International Journal
COPA 2025   14th Symposium on Conformal and Probabilistic Prediction with Applications
IEEE-Ei/Scopus-CNIOT 2025   2025 IEEE 6th International Conference on Computing, Networks and Internet of Things (CNIOT 2025) -EI Compendex
ICSTTE 2025   2025 3rd International Conference on SmartRail, Traffic and Transportation Engineering (ICSTTE 2025)