posted by user: tannguyen || 4142 views || tracked by 2 users: [display]

DEEPDIFFEQ 2020 : ICLR Workshop on Integration of Deep Neural Models and Differential Equations

FacebookTwitterLinkedInGoogle

Link: http://iclr2020deepdiffeq.rice.edu
 
When Apr 26, 2020 - Apr 26, 2020
Where Addis Ababa, Ethiopia
Submission Deadline Feb 18, 2020
Notification Due Feb 25, 2020
Final Version Due Apr 19, 2020
Categories    machine learning   differential equations   deep learning
 

Call For Papers

Differential equations form the bedrock of scientific computing, while neural networks have emerged as the preferred tool of modern machine learning. These two methods are not only closely related to each other but also offer complementary strengths: the modelling power and interpretability of differential equations, and the approximation and generalization power of deep neural networks.

While progress has been made on combining differential equations and deep neural networks, most existing work has been disjointed, and a coherent picture has yet to emerge.  Thus, a theoretical foundation for integrating deep neural networks and differential equations remains poorly understood, with many more questions than answers. For example: How can we incorporate a given ordinary/partial differential equation (ODE/PDE) into an architecture of a deep neural network? Under what assumptions can we approximate a system of ODEs/PDEs by deep neural networks? How good are these approximations? How can we interpret deep neural networks from the perspective of ODEs/PDEs? How well-developed mathematical tools for ODEs/PDEs can be leveraged to help us gain a better understanding of deep neural networks and improve their performance? Substantive progress will require a principled approach that integrates ideas from the disparate lens, including differential equations, machine learning, numerical analysis, optimization, optimal transport, computer graphics, and physics.

The goal of this workshop is to provide a forum where theoretical and experimental researchers of all stripes can come together not only to share reports on their progress but also to find new ways to join forces towards the goal of coherent integration of deep neural networks and differential equations. Topics to be discussed include, but are not limited to:

Deep learning for high dimensional PDE problems
PDE and stochastic analysis for deep learning
PDE and analysis for new architectures; stable architecture design using numerical stability approaches
Inverse problems approaches to learning theory; regularization of the loss in deep learning, convergence in the data sampling limit
PDEs on graphs
Physics-inspired neural networks
Numerical tools and library for interfacing deep learning models and ODE/PDE solvers
Deep learning for computer graphics
Optimal transport for deep generative models
Applications of deep learning + differential equations in scientific problems

We invite researchers to submit anonymous extended abstracts of up to 4 pages (including abstract, but excluding references). No specific formatting is required. Authors may use the ICLR style file, or any other style as long as they have standard font size (11pt) and margins (1in).

Submissions should be anonymous and are handled through the OpenReview system. Please note that at least one coauthor of each accepted paper will be expected to attend the workshop in person to present a poster or give a contributed talk.

Papers can be submitted at the address:

https://openreview.net/group?id=ICLR.cc/2020/Workshop/DeepDiffEq

Important Dates

Submission Deadline (EXTENDED): 23:59 pm PST, Tuesday, February 18th
Acceptance notification: Tuesday, February 25th
Camera ready submission: Sunday, April 19th
Workshop: Sunday, April 26th

Related Resources

21st AIAI 2025   21st (AIAI) Artificial Intelligence Applications and Innovations
IEEE-Ei/Scopus-ITCC 2025   2025 5th International Conference on Information Technology and Cloud Computing (ITCC 2025)-EI Compendex
25th EANN/EAAAI 2025   25th (EANN/EAAAI) Engineering Applications and Advances of of Artificial Intelligence
AMLDS 2025   IEEE--2025 International Conference on Advanced Machine Learning and Data Science
ACDL 2025   8th Advanced Course on Data Science & Machine Learning
CWOC 2025   2025 International Conference on Wireless and Optical Communications (CWOC 2025)
SPIE-Ei/Scopus-DMNLP 2025   2025 2nd International Conference on Data Mining and Natural Language Processing (DMNLP 2025)-EI Compendex&Scopus
DeLTA 2025   6th International Conference on Deep Learning Theory and Applications
IEEE-Ei/Scopus-CNIOT 2025   2025 IEEE 6th International Conference on Computing, Networks and Internet of Things (CNIOT 2025) -EI Compendex
DeepXplain 2025   IJCNN Special Session on Explainable Deep Neural Networks for Responsible AI: Post-Hoc and Self-Explaining Approaches