posted by user: yaseramd1 || 8056 views || tracked by 11 users: [display]

IEEE DTL 2019 : The Second IEEE International Workshop on Deep and Transfer Learning

FacebookTwitterLinkedInGoogle

Link: http://emergingtechnet.org/DTL2019/default.php
 
When Oct 22, 2019 - Oct 25, 2019
Where Granada, Spain
Submission Deadline Jul 1, 2019
Notification Due Aug 20, 2019
Final Version Due Sep 5, 2019
Categories    deep learning   transfer learning   big data   artificial intelligence
 

Call For Papers

The Second International Workshop on Deep and Transfer Learning
(DTL 2019)

in conjunction with

The 6th International Conference on Social Networks Analysis, Management and Security(SNAMS-2019)
The 6th International Conference on Internet of Things: Systems, Management and Security (IoTSMS 2019)

Granada, Spain. October 22-25, 2019




Deep learning approaches have caused tremendous advances in many areas of computer science. Deep learning is a branch of machine learning where the learning process is done using deep and complex architectures such as recurrent convolutional artificial neural networks. Many computer science applications have utilized deep learning such as computer vision, speech recognition, natural language processing, sentiment analysis, social network analysis, and robotics. The success of deep learning enabled the application of learning models such as reinforcement learning in which the learning process is only done by trial-and-error, solely from actions rewards or punishments. Deep reinforcement learning come to create systems that can learn how to adapt in the real world. As deep learning utilizes deep and complex architectures, the learning process usually is time and effort consuming and need huge labeled data sets. This inspired the introduction of transfer and multi-task learning approaches to better exploit the available data during training and adapt previously learned knowledge to emerging domains, tasks, or applications.
Despite the fact that many research activities is ongoing in these areas, many challenging are still unsolved. This workshop will bring together researchers working on deep learning, working on the intersection of deep learning and reinforcement learning, and/or using transfer learning to simplify deep leaning, and it will help researchers with expertise in one of these fields to learn about the others. The workshop also aims to bridge the gap between theories and practices by providing the researchers and practitioners the opportunity to share ideas and discuss and criticize current theories and results.

Proceedings of the workshops will be published by the IEEE Conference Publishing Services (CPS) and will be submitted for inclusion in the IEEE-Xplore and the IEEE Computer Society (CSDL) digital libraries.


Topics of interest
==============
We invite the submission of original papers on all topics related to deep learning, deep reinforcement learning, and transfer and multi-task learning, with special interest in but not limited to:

Deep learning for innovative applications such machine translation, computational biology
Deep Learning for Natural Language Processing
Deep Learning for Recommender Systems
Deep learning for computer vision
Deep learning for systems and networks resource management
Optimization for Deep Learning
Deep Reinforcement Learning
o Deep transfer learning for robots
o Determining rewards for machines
o Machine translation
o Energy consumption issues in deep reinforcement learning
o Deep reinforcement learning for game playing
o Stabilize learning dynamics in deep reinforcement learning
o Scaling up prior reinforcement learning solutions
Deep Transfer and multi-task learning:
o New perspectives or theories on transfer and multi-task learning
o Dataset bias and concept drift
o Transfer learning and domain adaptation
o Multi-task learning
o Feature based approaches
o Instance based approaches
o Deep architectures for transfer and multi-task learning
o Transfer across different architectures, e.g. CNN to RNN
o Transfer across different modalities, e.g. image to text
o Transfer across different tasks, e.g. object recognition and detection
o Transfer from weakly labeled or noisy data, e.g. Web data
Datasets, benchmarks, and open-source packages

Paper Submission :
=============

Authors are requested to submit papers reporting original research results and experience. The page limit for full papers is 6 pages. Papers should be prepared using IEEE two-column template.

IEEE Computer Society Proceedings Author Guidelines are available at: IEEE Guidelines Link

Papers should be submitted as PDF files via the EasyChair: EasyChair Link

Submitted research papers may not overlap with papers that have already been published or that are simultaneously submitted to a journal or a conference. All papers accepted for this conference are peer-reviewed and are to be published in the conference proceedings by the IEEE Computer Society Conference Publishing Service (CPS), and indexed by IEEE Xplore Digital Library

Related Resources

AAIML 2026   IEEE--2026 International Conference on Advances in Artificial Intelligence and Machine Learning
ICoSR 2025   2025 4th International Conference on Service Robotics
IEEE ICEIT 2026   IEEE--2026 the 15th International Conference on Educational and Information Technology (ICEIT 2026)
MathSJ 2025   Applied Mathematics and Sciences: An International Journal
IEEE ICoIAS 2025   IEEE--2025 the 7th International Conference on Intelligent Autonomous Systems (ICoIAS 2025)
ICEIT 2026   IEEE--2026 the 15th International Conference on Educational and Information Technology (ICEIT 2026)
ICDM 2025   The 25th IEEE International Conference on Data Mining
IEEE-MLNLP 2025   2025 IEEE 8th International Conference on Machine Learning and Natural Language Processing (MLNLP 2025)
IJRAP 2025   International Journal of Recent advances in Physics