posted by organizer: gamato || 1471 views || tracked by 2 users: [display]

Learning from Scarce Data 2022 : CBMI Special Session: Learning from scarce data challenges in the media domain

FacebookTwitterLinkedInGoogle

Link: https://cbmi2022.org/call-for-special-session-papers/
 
When Sep 14, 2022 - Sep 16, 2022
Where Graz, Austria
Submission Deadline May 9, 2022
Notification Due Jun 27, 2022
Final Version Due Jul 11, 2022
Categories    artificial intelligence   learning from scarce data
 

Call For Papers

CALL FOR PAPERS:
Special session on "Learning from scarce data challenges in the media domain"
(in conjunction with CBMI 2022, September 14-16, Graz, Austria)

Website: https://cbmi2022.org/call-for-special-session-papers/
Contact: Hannes Fassold, JOANNEUM RESEARCH, hannes.fassold@joanneum.at
Paper deadline: April 10, 2022

Deep learning-based algorithms for multimedia content analysis need a large amount of annotated data for effective training, e.g., for image classification on the ImageNet dataset, each class comprises several thousand annotated samples. Having a dataset of insufficient size for training usually leads to a model which is prone to overfitting and performs poorly in practice. But in many real-world applications in multimedia content analysis, it is not possible or not viable to gather and annotate such a large training data. This may be due to the prohibitive cost of human annotation, ownership/copyright issues of the data, or simply not having enough media content of a certain kind available.

To address this issue, a lot of research has been performed in recent years on learning from scarce data/learning from limited data. There are a variety of ways to work around the problem of data scarcity like using transfer learning, domain transfer or few-shot learning.

The special session on “Learning from scarce data” aims to provide a forum for novel approaches on learning from scarce data for multimedia content analysis, with a focus on the media domain.

The topics of interest include, but are not limited to:

-Transfer learning
-Synthetic data generation
-Domain transfer/adaptation
-Semi-supervised and self-supervised learning, e.g. to take advantage of large amounts of unlabeled media archive content
-Few-shot learning (classification, object detection etc.), which is useful e.g. for adding new object classes to an automatic tagging engine for media archive content.
-Benchmarking and evaluation frameworks for content from the media domain
-Open resources, e.g., software tools for learning from scarce data in the media domain



Session Organisers:
-Dr. Giuseppe Amato, CNR-ISTI, Pisa
-Prof. Bogdan Ionescu, AI Multimedia Lab, Politehnica University of Bucharest, Romania
-Hannes Fassold, JOANNEUM RESEARCH, Graz

Related Resources

AMLDS 2026   IEEE--2026 2nd International Conference on Advanced Machine Learning and Data Science
Ei/Scopus-CCNML 2025   2025 5th International Conference on Communications, Networking and Machine Learning (CCNML 2025)
Ei/Scopus-CEICE 2026   2026 3rd International Conference on Electrical, Information and Communication Engineering (CEICE 2026)
Ei/Scopus-SGGEA 2025   2025 2nd Asia Conference on Smart Grid, Green Energy and Applications (SGGEA 2025)
Ei/Scopus-EECT 2026   2026 IEEE 6th International Conference on Advances in Electrical, Electronics and Computing Technology (EECT 2026)
IEEE-ACAI 2025   2025 IEEE 8th International Conference on Algorithms, Computing and Artificial Intelligence (ACAI 2025)
S+SSPR 2026   Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition and Structural and Syntactic Pattern Recognition
IEEE Big Data - MMAI 2025   IEEE Big Data 2025 Workshop on Multimodal AI
ICCAI 2026   2026 12th International Conference on Computing and Artificial Intelligence (ICCAI 2026)
ICIST 2026   2026 The 5th International Conference on Intelligent Science and Technology (ICIST 2026)