posted by organizer: IceRiver91 || 2931 views || tracked by 5 users: [display]

NCAA 2022 : Topical Collection on Deep Learning for Time Series Data for Neural Computing and Applications

FacebookTwitterLinkedInGoogle

Link: https://www.springer.com/journal/521/updates/18687164
 
When N/A
Where N/A
Submission Deadline Jun 30, 2021
Notification Due Sep 15, 2021
Final Version Due Feb 28, 2022
Categories    deep learning   time series
 

Call For Papers

Recent developments in time-dependent services and the Internet of Things (IoT) have resulted in the broad availability of massive time series data. Subsequently, analyzing time series data became critically important due to its ability to promote diverse real-world applications such as intelligent manufacturing, smart city, business intelligence, public safety, medicine and health care, environmental management, security and monitoring, and so on. Considering the variety, volume, and dimension of time series data, traditional modelbased and statistical approaches are inadequate in many applications. Deep learning techniques have recently gone through massive growth. Deep learning models, such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), and Graph Neural Network (GNN), have been extensively applied in many domains such as perception, computer vision, natural language processing, and machine translation. They have drastically outperformed traditional approaches for various machine learning tasks due to their powerful learning ability. This success further inspired many recent works to adopt these deep learning models for various time series data analysis tasks, such as equipment fault detection, traffic flow prediction, financial forecasting, remote sensing data classification, fault diagnosis, natural calamity prediction, and various timebased social network services. This topical collection solicits high-quality research papers in theory, techniques, approaches, and applications using deep learning for diverse time series data processing and analysis tasks. Both researchers and practitioners are invited to present their latest research findings and engineering experiences in time series analysis and applications with deep learning techniques.

Related Resources

IEEE-Ei/Scopus-ITCC 2025   2025 5th International Conference on Information Technology and Cloud Computing (ITCC 2025)-EI Compendex
AMLDS 2025   IEEE--2025 International Conference on Advanced Machine Learning and Data Science
CVAI 2026   2026 International Symposium on Computer Vision and Artificial Intelligence (CVAI 2026)
21st AIAI 2025   21st (AIAI) Artificial Intelligence Applications and Innovations
ITISE 2025   International conference on Time Series and Forecasting
Topical collection Springer 2025   CFP: Sense-Making and Collective Virtues among AI Innovators. Aligning Shared Concepts and Common Goals
IJSC 2024   International Journal on Soft Computing
AASDS 2024   Special Issue on Applications and Analysis of Statistics and Data Science
ICMLSC 2025   2025 The 9th International Conference on Machine Learning and Soft Computing (ICMLSC 2025)
MSEJ 2024   Advances in Materials Science and Engineering: An International Journal