posted by user: CH_Chen || 1245 views || tracked by 1 users: [display]

SNL 2017 : First International Workshop on Symbolic-Neural Learning

FacebookTwitterLinkedInGoogle

Link: http://www.ttic.edu/SNL2017/
 
When Jul 7, 2017 - Jul 8, 2017
Where Nagoya
Submission Deadline Mar 22, 2017
Notification Due May 10, 2017
Final Version Due Jun 7, 2017
 

Call For Papers

Symbolic-neural learning involves deep learning methods in combination with symbolic structures. A "deep learning method" is taken to be a learning process based on gradient descent on real-valued model parameters. A "symbolic structure" is a data structure involving symbols drawn from a large vocabulary; for example, sentences of natural language, parse trees over such sentences, databases (with entities viewed as symbols), and the symbolic expressions of mathematical logic or computer programs. Natural applications of symbolic-neural learning include, but are not limited to, the following areas:

- Image caption generation and visual question answering
- Speech and natural language interactions in robotics
- Machine translation
- General knowledge question answering
- Reading comprehension
- Textual entailment
- Dialogue systems

Various architectural ideas are shared by deep learning systems across these areas. These include word and phrase embeddings, recurrent neural networks (LSTMs and GRUs) and various attention and memory mechanisms. Certain linguistic and semantic resources may also be relevant across these applications. For example dictionaries, thesauri, WordNet, FrameNet, FreeBase, DBPedia, parsers, named entity recognizers, coreference systems, knowledge graphs and encyclopedias. Deep learning approaches to the above application areas, with architectures and tools subjected to quantitative evaluation, loosely define the focus of the workshop.

We invite submissions of high-quality, original papers within the workshop focus. The workshop will consist of a half-day of invited talks and a full day of presentations of accepted papers.

Related Resources

EXPLAINS 2025   2nd International Conference on Explainable AI for Neural and Symbolic Methods
Ei/Scopus-SGGEA 2025   2025 2nd Asia Conference on Smart Grid, Green Energy and Applications (SGGEA 2025)
IEEE-ACAI 2025   2025 IEEE 8th International Conference on Algorithms, Computing and Artificial Intelligence (ACAI 2025)
CVAI 2026   2026 International Symposium on Computer Vision and Artificial Intelligence (CVAI 2026)
IEEE-Ei/Scopus-PRDM 2025   2025 6th International Conference on Pattern Recognition and Data Mining (PRDM 2025)
Ei/Scopus-MLBDM 2025   2025 5th International Conference on Machine Learning and Big Data Management (MLBDM 2025)
ICAISC 2026   International Conference on Artificial Intelligence and Soft Computing
S+SSPR 2026   Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition and Structural and Syntactic Pattern Recognition
SYNASC 2025   27th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing
NCTA 2025   17th International Conference on Neural Computation Theory and Applications