| |||||||||||||||
AMSS 2020 : Workshop on Analysis of Medical and Sports Sensor Data Using Deep Learning | |||||||||||||||
Link: https://github.com/kelkalot/AMSS-workshop | |||||||||||||||
| |||||||||||||||
Call For Papers | |||||||||||||||
The development of intelligent medical and sports data analysis systems has experienced a significant boost in recent years thanks to the emergence of a machine learning paradigm known as deep learning (DL). DL algorithms have enabled the development of highly accurate systems (with performance comparable to that of human experts, in some cases) and have become a standard choice for analyzing medical and sport data, especially images and videos. Dozens of commercial applications using deep learning to analyze, classify, segment and measure data from different modalities of sensors are currently available. Deep learning methods applied on medical and sports data are contributing to understand the evolution of chronic diseases, predicting the risk of developing those diseases, and understanding the performance of athletes and their risk of overuse injuries. Researchers in industry, hospitals, sports institutes and academia have published hundreds of scientific contributions in this area during the last year alone.
The presented workshop is meant as a forum for the discussion of the impact of deep learning on medical and sport sensor data analysis and a focused venue for sharing novel scientific contributions in the area of deep learning. Topics of interest include (but are not limited to): · Novel approaches for medical and sport sensor data classification, event detection, segmentation, and abnormality detection using DL; · DL for injury analysis; · DL for image medical data analysis; · Content-Based Sensor Data Retrieval (CSDR) using DL; · Medical and Sport Sensor data understanding using DL; · Medical and Sport Sensor data visualisation; · Sensor data generation and preprocessing methods using unsupervised DL like GANs, autoencoders, etc.; · Multimodal analysis and fusion using DL; · Applications of DL in different fields and disciplines. · Combination of Sports and health data. · Human behavior modelling using DL; Authors are invited to submit their original contributions before the deadline following the conference submission guidelines. Each contribution must be prepared following the ACM two-column format, and should not exceed the length of 6 (six) Letter-sized pages. For detailed instructions, please visit the conference homepage. https://github.com/kelkalot/AMSS-workshop For paper submission guidelines, please visit https://github.com/kelkalot/AMSS-workshop Important dates: Deadline paper submission: Mar 12, 2020 Notification of acceptance: Mar 28, 2020 Camera-ready due: April 15, 2020 Author registration at the conference: TBA Workshop website: https://github.com/kelkalot/AMSS-workshop Conference website: http://icmr2020.org/ Chairs: Michael Riegler, SimulaMet & Krisitiania, Norway [michael (at) simula.no] Pål Halvorsen, SimulaMet, Norway [paalh (at) simula.no] Steven Hicks, SimulaMet, Norway | [steven (at) simula.no] Enrique Garcia Ceja, SINTEF, Norway [enrique.garcia-ceja (at) sintef.no] Tor-Morten Grønli, Kristiania [Tor-Morten.Gronli (at) kristiania.no] |
|