| |||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||
All CFPs on WikiCFP | |||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||
Present CFP : 2019 | |||||||||||||||||||||||||||||||||||||||
--------------------------------------------------------------------------------
ISMM 2019 – 14th International Symposium on Mathematical Morphology Saarland University, Saarbrücken, Germany July 8–10, 2019 http://ismm.uni-saarland.de/ -------------------------------------------------------------------------------- The International Symposium on Mathematical Morphology (ISMM) has established itself as the main scientific event in the field. We will be delighted to host the 14th International Symposium on Mathematical Morphology (ISMM 2019) at the Saarland University in Saarbrücken, Germany. The goal of the conference is to bring together researchers, students, and practitioners of mathematical morphology and related methodologies, to present and discuss new advances in the field, be they purely theoretical developments or novel applications. Proceedings ----------- Proceedings will be published in Springer’s Lecture Notes in Computer Science series (LNCS). Main topics of interest include (but are not limited to) -------------------------------------------------------- • Algebraic Theory: Morphology on complete lattices and semilattices, Representation of morphological operators, Fuzzy morphology, Connected operators, Morphology on graphs, Morphology on Surface Meshes and Riemannian manifolds. • Nonlinear Scale Space Theory: Morphological decompositions, Morphological PDEs, Level set methods, Morphological wavelets, Morphological regularization. • Discrete Geometry and Combinatorial Topology: Grids, discrete objects, discrete model properties, digitization schemes, metrics and distance transformation, skeletons, discrete tomography, etc. • Random sets Theory and Geometrical Probability: Boolean model for sets and functions, Stochastic simulation of random media, etc. • (max,+) Mathematics and Idempotent Analysis for Image and Signal Processing. • Image Filtering: Color and multi-channel morphology, Morphology on tensor fields, Geodesic transformations, Adaptive morphology, Attribute filtering. • Image Segmentation: Watershed segmentation, Hierarchical segmentation, Color and multi-channel image segmentation, Texture segmentation, Clustering of spatial data. • Computational Mathematical Morphology: Algorithms, Architectures, Data structures and programming paradigms for efficient implementation of morphological operators. • Applications: Astronomy, Geosciences and remote sensing, (Bio)medical imaging, Materials science, Data analysis, Document processing, Content-based information retrieval, Video surveillance, Industrial control, Visualization, etc. Important dates --------------- • Submission deadline: January 15th 2018 • Notification of acceptance: March 1st 2019 • Camera ready paper: April 1st 2019 • Conference: July 8–10, 2019 Organizing Committee -------------------- • Bernhard Burgeth, Saarland University, burgeth@math.uni-sb.de • Andreas Kleefeld, Forschungszentrum Jülich, a.kleefeld@fz-juelich.de • Benoît Naegel, Strasbourg University, b.naegel@unistra.fr • Nicolas Passat, Reims Champagne-Ardenne University, nicolas.passat@univ-reims.fr • Benjamin Perret, ESIEE-Paris, benjamin.perret@esiee.fr | |||||||||||||||||||||||||||||||||||||||
|